MODELAGENS 2D E 3D PARA AVALIAÇÃO DE REATIVAÇÃO DE FALHAS GEOLOGICAS EM CAMPOS DE HIDROCARBONETO
DOI:
https://doi.org/10.26512/ripe.v2i8.21754Keywords:
Reativação de falhas. Elementos de interface. Elementos finitos.Abstract
Reservatórios de petróleo e gás estruturalmente compartimentados por falhas geológicas selantes são encontrados em diversas regiões do mundo. Durante a fase de produção, a integridade do selo destas falhas pode ser comprometida pelas deformações decorrentes dos processos de depleção e/ou injeção de fluidos. Estas deformações, em conjunto com as propriedades físicas e geométricas das rochas e falhas presentes, podem alterar significativamente o estado de tensão fazendo com que uma falha reative e se torne hidraulicamente condutora. A esse fenômeno estão associados riscos de exsudação, perda de integridade de poços e outros potencias problemas geomecânicos. Na literatura, diversas modelagens numéricas têm sido utilizadas a fim de caracterizar e prever os fenômenos de reativação e/ou abertura de falhas geológicas. A maior parte destas abordagens faz uso de modelos bidimensionais considerando seções críticas na hipótese de estado plano de deformação. Essas simplificações são adotadas a fim de evitar a complexidade geométrica e o alto custo computacional de uma modelagem tridimensional. No entanto, a configuração tridimensional dos planos de falha pode induzir a reativação em direção a zonas mais críticas do que aquelas contidas numa única seção. Neste trabalho apresenta-se uma metodologia para análise de reativação de falhas geológicas e discute-se a importância do uso dos modelos 3D na previsão do comportamento geomecânico de reservatórios compartimentados por falhas geológicas. Simulações numéricas considerando modelos 2D e 3D foram realizadas através de um simulador in-house baseado no método dos elementos finitos. Para a representação do meio continuo foram utilizados elementos quadrilaterais para o caso 2D, e elementos hexaédricos para o caso 3D. Para a representação das falhas geológicas foram utilizados elementos de interface de espessura nula segundo o critério de ruptura de Mohr-Coulomb. Da comparação dos resultados, constatam-se situações em que as análises 2D forneceram previsões de reativação e de abertura distintas daquelas obtidas com análises 3D. Particularmente em modelos com geometria irregular confirma-se a importância do emprego de modelo 3D.
Downloads
References
Costa, A. M, 1984. An application of computational methods and principles of rock mechanics in the design and analysis of underground excavation for the underground mining. PhD Thesis, Graduate School of Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ)
BostrØm, B., & Skomedal, E., 2004. Reservoir aeromechanics with ABAQUS. 2004 ABAQUS Users’ Conference, p 117-131
Chan, A. W., Zoback, M. D, 2007. The role of hydrocarbon production on land subsidence and fault reactivation in the Lousiana Coastal Zone. Journal of Coastal Research 23 p 771-786
CIMNE-International Center for Numerical Methods in Engineering, 2010. GID The personal pre and postprocessor. Version 10.0. User Manual, 2010
Chapman RE., 1983 Petroleum geology. Amsterdam, New York: Elsevier
Fang, Z., Younessi, A., Hon, V. Y., Refli, I., Piah, M., & Faizzudin, M., 2014. 3D Numerical Dynamic Geomechanical Analyses of Compaction, Subsidence and Fault Reactivation Throughout Multiple Producing and Injecting Reservoirs of a Sarawak Offshore Oil and Gas Field, Malaysia. InInternational Petroleum Technology Conference.
Fouladvand, A., Baroni, A., Cangeni, L & Deflande, J., 2009. Geomechanical modeling integrating subseismic faults. SPE Asia Pacific Oil and Gas conference and exhibition, Society of Petroleum Engineering.
Goodman, E. L.; Taylor, R. L.; & Brekke, A. M., 1968. A model for the mechanics of jointed rock. Journal of Soil and Mechanics and Foundation Engineering, vol. 94, 637”“659.
Kim, J., Tchelepi, H. A. and Juanes, R., 2011. Stability and Convergence of Sequential Methods for Coupled Flow and Geomechanics: Fixed-Stress andFixed-Strain Splits. Comput. Method. Appl. M. 200 (13-16), p1591-1606.
Mendes, R. A., Costa, A., Souza, L., Pereira, .L & Oliveira, M. F., 2010. Risks and mitigation problems in a CO2 injection project for a petroleum onshore field in Brazil. ARMA, American Rock Mechanics Association.
Michal, S. GEO FEM-Theoretical manual 2009. A computer program for nonlinear finite element analysis of geotechnical problems.
Moeck, I., Kwiatek, G., Zimmermann, G., 2009. Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir. Journal of Structural Geology. 31 p. 1174-1182.
Morton, R.A., Bernier, J.C. and Barras, J. A., 2006, Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA, Environmental Geology, 50, 261-274
Ng, K. L. A.; & Small, J. C., 1997. Behavior of Joints and Interfaces Subjected to Water Pressure. Computers and Geotechnics, vol. 20, pp. 71”“93.
Potts, M. D., Zdravkovic, L. 1999. Finite element analysis in geotechnical engineering. Imperial College of Science, Technology and Medicine.
Quispe, R., 2012. Analise tridimensional de problemas hidromecânicos em solos parcialmente saturados. Tese de Doutorado Ponficia Universidade Catolica do Rio de Janeiro
Rueda, J. A., Norena, N., Oliveira, M. F. F., & Roehl, D. M., 2014. Numerical models for detection of fault reactivation in oil and gas fields. In: 48th US Rock Mechanics Conference (ARMA 2014), p. 1-8.
Rueda, J. A., Oliveira, M. F. F, & Roehl, D. M., 2013. Geological fault reactivation with discrete and distributed numerical models. In: XXXIV Iberian Latin American Congress on Computational Methods in Engineering (CILAMCE 2013), p. 1-14.
Rueda, J. A., 2013. Reativação de falhas geológicas com modelos numéricos discretos e distribuído. MSc. Thesis, Pontifical Catholic University of Rio de Janeiro.
Rutqvist, J., Rinaldi A.P., Cappa, F. & Moridis, G. J, 2013. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. Journal of Petroleum Science and Engineering 107, p 1798-1807.
Rutqvist, J., 2012. The Geomechanics of CO2 Storage in Deep Sedimentary Formations. Geotech. Geol. Eng. 30, p 525-551.
Rutqvist, J., Birkholzer, J., Cappa, F. & Tsang, C. F., 2007. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers. Manag. 48, p 1798-1807.
Rutqvist, J., Wu, Y. S., Tsang, C. F. & Bodvarsson, G, 2002. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. International Journal of Rock Mechanics & Mining Sciences 39
Segall, P. S., Grasso, J.R., Mossop, A., 1994. Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. J. Geophys. Res. 99 (B8), p 15423-15438.
Serajian, V., Diessl, J., Bruno, M. S., Hermansson, L. C., Hatland, J., Risanger, M., & Torsvik, R. M., 2016. 3D Geomechanical Modeling and Fault Reactivation Risk Analysis for a Well at Brage Oilfield, Norway. In SPE Europec featured at 78th EAGE Conference and Exhibition. Society of Petroleum Engineers.
Settari, A., & Walters, D. A. 2001. Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. Spe Journal,6(03), p 334-342.
Soltanzadeh, H., & Hawkes, C. D. (2008). Semi-analytical models for stress change and fault reactivation induced by reservoir production and injection. Journal of Petroleum Science and Engineering, 60(2), p 71-85.
Vidal-Gilbert, S. et al., 2009. 3D geomechanical modeling for CO2 geologic storage in the Dogger carbonates of the Paris Basin. International Journal of Greenhouse Gas Control, p 288-299
Zhang, X., Sanderson, D. J., 1996. Numerical modelling of the effects of fault slip on fluid flow around extensional faults. Geomechanics Research Group, Departement of Geology, University of Southampton. Journal of Structural Geology. P 109-119
Zhang, Y., Gartrell, A., Underschultz, J.R, & Dewhurst, D. N., 2009.Numerical modelling of strain localisation and fluid flow during extensional fault reactivation: Implications for hydrocarbon preservation. Journal of Structural Geology volume 31, p 315-327
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.