NUMERICAL EVALUATION OF THE EFFECT OF UNCERTAINTIES IN ROTATING MACHINERY USING REDUCED MODEL
DOI:
https://doi.org/10.26512/ripe.v2i16.21617Keywords:
Rotating machines. Model reduced. Latin Hypercube method. Uncertainty analysis.Abstract
Rotating machines are extensively used in industrial applications considering the flexibility of the equipment, capable of being operated at extreme speeds, the study of uncertainties are required, due the influence in the dynamic behavior. The use of stochastic techniques have played an important function in engineering problems, the Monte Carlo method (MC) and your variant called Latin Hypercube (LHS) are widely used to model u ncertain parameters. In this context, the present work is devoted to analysis of the uncertainties in the parameters of a flexible rotor discretized by finite element (FE). Aiming a considerable saving of time, models reduced by Iterative Improved Reduction System (IIRS) method were used in the numerical analysis process. The analysis procedure is limited to the frequency domain. Solution envelopes are obtained by LHS method that allow us to describe the system behavior considering some parameters as random.
Downloads
References
Berthier, P., Ferraris G., Lallane, M.,1983. Prediction of Critical Speeds, Unbalance and Nonsychronous Forced Response of Rotors. Shock and Vibration, part 4, pp. 103-111.
Cavalini Jr, A. A., 2013. Detection and Identification of Incipient Transversal Cracks in Flexible and Horizontal Shafts of Rotating Machines. PhD Thesis, Federal University of Uberlândia, Uberlândia, MG, Brazil.
Cavalini Jr., A. A., Santos, M.B., Steffen Jr., V., Mahfoud, J., 2012. Industrial Application of a Model Based Rotor Balancing Technique. Vibrations, Shock and Noise.
Craig, Jr., Roy, R., 1981. Structural Dynamics: An introduction to computer Methods. John Wiley & Sons, New York, N. Y.
De Lima, A.M.G., Rade, D.A. and Bouhaddi, N., 2010. Stochastic Modeling of Surface Viscoelastic Treatments Combined with Model Condensation Procedures. Shock and Vibration, Vol. 17, pp. 429-444.
Didier, J., Faverjon, B. & Sinou, J.J., 2012. Analyzing the dynamic response of a rotor system under uncertain parameters by polynomial chaos expansion. Journal of Vibration and Control, 18 (5): 587-607.
Friswell, M.; Garvey, S.; Penny, J., 1995. Model reduction using dynamic and iterated IRS techniques. Journal of sound and vibration, Elsevier, Vol. 186, n. 2, pp. 311”“323.
Ghanem, R.G. and Spanos, P. D., 1991. Stochastic Finite Elements ”“ A Spectral Approach, Spring Verlag.
Guedri, M.; Bouhaddi, N.; Majed, R., 2006. Reduction of the stochastic finite element models using a robust dynamic condensation method. Journal of Sound and Vibration, Elsevier, v. 297, n. 1, pp. 123”“145.
Guyan, R. J. 1965. Reduction of stiffness and mass matrices. AIAA journal, Vol. 3, n. 2, pp. 380”“380.
Koroishi, E. H., Cavalini Jr, A. A., de Lima, A.M.G., and Steffen Jr, V., 2012. Stochastics Modeling of Flexible Rotors, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 34, pp. 597-603.
Koroishi, E. H., 2013. Vibration Control of Rotating Machines using Electromagnetic Actuators. PhD Thesis, Federal University of Uberlândia, Uberlândia, MG, Brazil.
Koutsovasilis, P.; Beitelschmidt, M., 2008. Model reduction comparison for the elastic crankshaft mechanism. Proceedings of the 2nd International Operational Modal Analysis Conference, IOMAC 2008, Vol. 1, pp. 95”“106.
Lalanne, M.; Ferraris, G., 1998. Rotordynamics prediction in engineering. John Wiley & Sons, INC.
Lallement, G., Lecoanet, H., Steffen Jr, V., 1982. Vibration de Rotor sur pallier à Matrice de Raideur non Symétrique. Mechanism and Machine Theory, Vol. 17, n. 1, pp. 47-55.
Lara-Molina, F.A., Koroishi, E.H. and Steffen Jr, V., 2014. Structural Analysis Considering Uncertainties Parametric Fuzzy. Computational Intelligence techniques with applications in Inverse Problems Engineering. Omnipax, Vol. 1, pp. 133-144.
Meggiolaro, M.A., 1996. Bearings Hydrodynamic Modeling in Simulation Rotating System, Masters Dissertation, Pontifícia Universidade Católica do Rio de Janeiro.
Möller, B. and Beer, M., Fuzzy Randomness, Uncertainty in Civil Engineering and Computational Mechanics, Springer-Verlag, 2004.
Simões, R. C., Der Hagopian, J., Mahfoud, J., Steffen Jr, V., 2007. Modal Active Vibration Control of a Rotor Using Piezoelectric Stack Actuators. Journal of Vibration and Control, Vol. 13, pp. 45-64.
Steffen Jr, V., 1981. Analytical Study and Experimental Rotor Dynamics. Journal of Mechanical Sciences, Vol. III, No. 3, pp. 3-8.
Ujihara, D. Y., 2011. Obtaining a Flexible Rotor Model Supported by Active Magnetic Bearings Using Finite Element Method. Masters Dissertation, Federal University of Fluminense, Niterói, RJ.
Vance, J., Zeidan, F., Murphy, B., Machinery Vibration and Rotordynamics. John Wiley & Sonsand Control, Vol. 13, pp. 45-64, 2010.
Xia, Y.; Lin, R., 2004. Improvement on the iterated irs method for structural eigensolutions. Journal of sound and vibration, Elsevier, v. 270, n. 4, p. 713”“727.
Xiu, D., 2010. Numerical Methods for Stochastic Compoutations: A Spectral Method Approach. Princeton University Press.
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.