MODELAGEM NUMÉRICA DA PROPAGAÇÃO DE FISSURAS EM MEIOS FRÁGEIS BIDIMENSIONAIS UTILIZANDO O MÉTODO DOS ELEMENTOS DE CONTORNO

Authors

  • Heider de Castro e Andrade USP
  • Edson Denner Leonel USP

DOI:

https://doi.org/10.26512/ripe.v2i6.21599

Keywords:

Mecânica da Fratura Elástico-Linear. Propagação de fissuras. Integral J. Método dos elementos de contorno dual.

Abstract

Neste estudo é realizada a implementação computacional de um modelo numérico capaz de simular a propagação de fissuras em meio frágil, isotrópico e bidimensional. A resposta mecânica da estrutura é determinada a partir do método dos elementos de contorno (MEC). A formulação dual é utilizada, na qual são utilizadas a formulação singular e hiperssingular do MEC. É proposto um esquema de remalhamento automático para a criação de novos elementos e modificação de elementos interceptados durante a propagação de fissuras. O sistema de equações lineares é modificado à medida que há alteração da malha da estrutura. Nas análises de fratura frágil, os fatores de intensidade de tensão são calculados a partir da integral J. Dois exemplos são mostrados para a avaliação da eficácia do modelo proposto. O primeiro aborda um problema com resposta analítica conhecida. O segundo trata de um problema de propagação em modo misto. Os resultados obtidos pelo modelo proposto são comparados com os fornecidos pelo software Franc2D. Foram obtidas excelentes correspondências entre os resultados determinados neste trabalho com os valores de referência.

Downloads

Download data is not yet available.

References

Aliabadi, M.H., 2002. The Boundary Element Method: Application in solids and structures. v.2. Wiley.

Barsoum, R.S., 1976. On the use of isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering, v.10, n.1, pp.25-37.

Belytschko, T. & Black, T., 1999. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, v.45, n.5, pp.601-620.

Belytschko, T., Gu, L. & Lu, Y.Y., 1994. Fracture and crack growth by element free Galerkin methods. Modelling and Simulation in Materials Science and Engineering, v.2, n.3A, pp.519-534.

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. & Krysl, P., 1996. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, v.139, pp.3-47.

Chan, S.K., Tuba, I.S. & Wilson, W.K., 1970. On the finite element method in linear fracture mechanics. Engineering Fracture Mechanics, v.2, n.1, pp.1-17.

Cruze, T.A. & van Buren, W, 1971. Three dimensional elastic stress analysis of fracture specimen with an edge crack. International Journal of Mechanics, v.7, pp.7-15.

Erdogan, F. & Sih, G.C., 1963. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, v.85, pp.519-527.

Griffith, A.A., 1920. The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London, v.221, pp.163-198.

Hong, H.K. & Chen, J.T., 1988. Derivations of integral equations of elasticity. Journal of Engineering Mechanics, v.114, pp.1028-1044.

Inglis, C.E., 1913. Stresses in a plate due to the presence of cracks and sharp corners. Transaction of the Royal Institution of Naval Architects, series A, v.221, pp.163-198.

Irwin, G.R., 1957. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, v. 24, pp.361-364.

Isida, M., 1971. Effect of width and length on stress intensity factors of internally cracks plates under various boundary conditions. International Journal of Fracture Mechanics, v.7, n.3, pp.301-316.

Kitagawa, H., Okamura, H. & Ishikawa, H., 1978. Application of J-integral to mixed-mode crack problems. Transactions of the JSME. n. 780-4, pp. 52-54.

McNeill, S.R., Peters, W.H. & Sutton, M.A., 1987. Estimation of stress intensity factor by digital image correlation. Engineering Fracture Mechanics, v. 28, n. 1, pp.101-112.

Melenk, J.M. & Babuska, I, 1996. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, v.139, pp.289-314.

Mi, Y. & Aliabadi, M.H, 1995. An automatic procedure for mixed-mode crack growth analysis. Communications in Numerical Methods in Engineering, v.11, pp.167-177.

Murakami, Y., 1987. Stress intensity factors handbook. Pergamon Press.

Portela, A., 1992. Dual boundary element incremental analysis of crack growth. PhD thesis, Wessex Institute of Technology/Portsmouth.

Portela, A., Aliabadi, M.H. & Rooke, D.P., 1992. Dual Boundary Element Method: Effective Implementation for Crack Problems. International Journal for Numerical Methods in Engineering, v.33, pp.1269-1287.

Rice, J.R., 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, v.35, pp.379-386.

Roux, S. & Hild, F., 2006. Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. International Journal of Fracture, v. 140, n.1, pp.141-157.

Tada, H., Paris, P.C. & Irwin, G.R., 1985. The stress analysis of cracks handbook. 2ª ed. Paris Productions.

Warwrzynek, P. & Ingraffea, A., 1994. Franc2D: a two-dimensional crack propagation simulator (Version 2.7 User’s Guide). NASA Contractor Report 4572.

Westergaard, H.M., 1939. Bearing pressures and cracks. Journal of applied mechanics, v.6, pp.49-53.

Published

2019-01-07

How to Cite

Andrade, H. de C. e, & Leonel, E. D. (2019). MODELAGEM NUMÉRICA DA PROPAGAÇÃO DE FISSURAS EM MEIOS FRÁGEIS BIDIMENSIONAIS UTILIZANDO O MÉTODO DOS ELEMENTOS DE CONTORNO. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(6), 203–222. https://doi.org/10.26512/ripe.v2i6.21599