MODELAGEM E VISUALIZAÇÃO DE TRINCAS 2D USANDO EQUAÇÃO INTEGRAL DE CONTORNO DUAL
DOI:
https://doi.org/10.26512/ripe.v2i6.21477Keywords:
Dual boundary element. Crack growth. Modelling. Oop.Abstract
The stress analysis structures with complex geometry where it is continuously amended by the crack growth, as in aircraft fuselages, usually requires the employment of numerical methods, since the presence of cracks in the structure raises difficulties for the modelling and, therefore, the calculation of the stress intensity factors. Therefore, both the finite element method (FEM) and the boundary element method (BEM) have been applied in this type of analysis, with a slight advantage for the BEM due it does not require continuous remeshing, whenever the crack spreads. Here, the BEM will be used in the treatment of modelling crack considering two independent boundary integral equations, known as dual boundary element method (DBEM): the displacement equation applied for collocation on one of the crack boundary and remaining boundaries, and the traction equation applied for collocation on the opposite crack boundary. Moreover, boundary continuous and discontinuous quadratic elements are used, respectively, along the remaining boundaries of the problem domain and crack boundaries. Aiming to attest the efficiency and robustness of the method, a C++ program for treating cracks two-dimensional models with MATLAB interface for propagation path preview, as well as two applications of open literature, are used.
Downloads
References
De Lacerda L. A. and Wrobel, L. C., 2001, Hypersingular boundary integral equation for axisymmetric elasticity. International Journal for Numerical Methods in Engineering, 52, 1337-1354.
Gallagher, R. H., 1978, A Review of Finite Element Techniques in Fracture Mechanics. Proc. of the First Conference on Numerical Methods in Frac Mech, A.R. Luxmoore and D. R. J. Owen (Editors), University college of Swansea, 1-25.
Swenson, D. V. and Ingraffea, A. R., 1988, Modelling Mixed-Mode Dynamic Crack Propagation Using Finite Elements: Theory and Applications, Comp. Mech. 3, 381-397.
Kocer, C. and Collins, R. E., 1997, The angle of Hertzian cone cracks. Journal of the American Ceramic Society, 81, 1736-1742.
Bush, M. B., 1999, Simulation of contact-induced fracture. Engineering Analysis with Boundary Elements, 23, 59-66.
Ingraffea, A. R., Blandford, G. E., and Ligget, J. A., 1983, Automatic Modelling of Mixed- Mode Fatigue and Quasi-Static Crack Propagation Using the Boundary Element Method, Proc. of Fracture Mechanics: Fourteenth Symposium, ASTM STP 791, J. C. Lewis and G.Sines (Editors), ASTM, I 407-426.
Portela, A., Aliabadi, M. H., and Rooke, D. P., 1993, Dual boundary element incremental analysis of crack propagation, Computer and Structures, Vol. 46, pp. 237-247.
Portela, A., Aliabadi, M. H. and Rooke, D. P., 1992, The Dual Boundary Element Method: Effective Implementation for Crack Problems. International Journal for Numerical Method in Engineering, Vol. 33, pp. 1269-1287.
Aliabadi, M. H., 2002, The Boundary Element Method ”“ Applications in Solids and Structures, Vol. 2, WILEY.
Carvalho, C. V. A., 1998, Simulação Bidimensional Adaptativa por Elementos Finitos de Processos de Fraturamento por Fadiga. Tese de Mestrado, PUC-Rio/Rio de Janeiro.
Gomes, G., 2000, Estrutura de Dados para Representação de Modelos Bidimensionais de Elementos de Contorno. Dissertação de Mestrado, Universidade de Brasília, Brasil.
Gomes, G., 2006, Aplicação dos Métodos de Elementos de Contorno e Reciprocidade Dual em Problemas de Plasticidade 2D Orientada a Objeto. Tese de Doutorado, ENC/FT/UnB,Brasília.
Booch, G., 1994, Object-Oriented Analysis and Design with Applications. The Benjamin/Cumming Publishing Company.
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.