CALIBRAÇÃO BAYESIANA DE UM MODELO ESTOCÁSTICO DE ELEMENTOS DE CONTORNO PARA A FRATURA NÃO-LINEAR DE COMPONENTES DE CONCRETO
DOI:
https://doi.org/10.26512/ripe.v2i6.21473Keywords:
Calibração Bayesiana. Método dos elementos de contorno. Modelo coesivo de fratura. Redes neurais artificiais.Abstract
A fratura mecânica de peças estruturais de concreto é por natureza um processo incerto sendo muitas vezes observadas discrepâncias significativas de resultados experimentais sob condições de ensaio, em teoria, idênticas. Essas incertezas podem ser representadas a partir de modelos mecânicos estocásticos. No entanto, a calibração desses modelos baseada em dados experimentais nem sempre é uma tarefa fácil. Neste trabalho é apresentado um procedimento para a calibração de um modelo estocástico de fratura não-linear em peças de concreto. O modelo mecânico de fratura é baseado no método dos elementos de contorno e no modelo coesivo de fratura. Três diferentes leis coesivas foram adotadas na calibração do modelo estocástico. Os fundamentos sobre calibração Bayesiana de modelos são apresentados e um recente método denominado “Calibração Bayesiana utilizando confiabilidade estrutural” é discutido e aplicado em um problema de fratura de vigas de concreto. Através desse método é possível quantificar o ajuste entre os resultados experimentais e os resultados do modelo calibrado considerando as três leis coesivas. Portanto é possível afirmar qual das leis resultou em um melhor ajuste do modelo estocástico após a calibração. Para viabilizar o custo computacional do procedimento, redes neurais artificiais foram utilizadas para a meta-modelagem do problema.
Downloads
References
Au, S.-K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16(4), 263-277.
Au, S.-K., & Beck, J. L. (2003). Subset Simulation and its Application to Seismic Risk Based on Dynamic Analysis. Journal of Engineering Mechanics, 129(8), 901-917.
Bayes, T. (1763). "An essay towards solving a problem in the doctrine of chances". Philosophical Transactions of the Royal Society of London, 53, 370-418.
Beck, J. L., & Katafygiotis, L. S. (1998). Updating models and their uncertainties. I: Bayesian statistical framework. Journal of Engineering Mechanics, 128(4), 380”“391.
Beck, J. L., & Yuen, K.-V. (2004). Model selection using response measurements: Bayesian probabilistic approach. Journal of Engineering Mechanics, 130(2), 192-203.
Beck, J., & Zuev, K. (2013). Asymptotically Independent Markov Sampling: a new MCMC scheme for Bayesian Inference. International Journal for Uncertainty Quantification, 3(2), 445-474.
Brebbia, C., & Dominguez, J. (1989). Boundary Elements: An introductory Course. New York: McGraw Hill.
Bucher, C., & Bourgund, U. (1990). A fast and efficient response surface approach for structural reliability problems. Journal of Structural Safety, 7(1), 57-66.
Calvi, A. (2005). “Uncertainty-based loads analysis for spacecraft: Finite element model validation and dynamic responses. Computers & Structures, 83(14), 1103-1112.
Chen, J., & Hong, H. (1999). Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series. Applied Mechanics Reviews, 52(1), 17-33.
Ching, J., & Chen, Y. (2007). Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging. Journal of Engineering Mechanics, 133(7), 816-832.
Cisilino, A., & Aliabadi, M. (1999). Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems. Engineering Fracture Mechanics, 63, 713-733.
Cordeiro, S., & Leonel, E. (2016). Fracture analysis of wood structures using a multi-region anisotropic boundary element formulation. CILAMCE.
Datta, B. (2002). Finite-element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems. Mechanical Systems and Signal Processing, 16(1), 83-96.
EN-12350-2. Testing fresh concrete ”“ Part 2: Slump-test (2009).
EN-14651. Test method for metallic fibered concrete ”“ measuring the flexural tensile strength (limit of proportionality (lop), residual) (2005).
Friswell, M. I., & Mottershead, J. E. (1995). “Finite element model updating in structural dynamics. Dordrecht, The Netherlands: Kluwer Academic.
Hillerborg, A., Modeer, M., & Petersson, P.-E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773-782.
Hills, R., Pilch, M., Dowding, K., Red-Horse, J., Paez, T., Babuška, I., & Tempone, R. (2008).
Validation Challenge Workshop. Computer Methods in Applied Mechanics and Engineering, 197(29-32), 2375-2380.
Hong, H., & Chen, J. (1988). Derivations of integral equations of elasticity. Journal of Engineering Mechanics, 116(6), 1028-1044.
Jaynes, E. (2003). Probability theory: The logic of science. Cambridge, UK: Cambridge University.
Katafygiotis, L. S., & Beck, J. L. (1998). Updating models and their uncertainties. II:Model identifiability. Journal of Engineering Mechanics, 124(4), 463-467.
Leonel, E. D., Venturini, W., & Chateauneuf, A. (2011). A BEM model applied to failure analysis of multi-fractured structures. Engineering Failure Analysis, 18, 1538-1549.
Leonel, E., & Venturini, W. (2010). Non-linear boundary element formulation with tangent operator to analyse crack propagation in quasi-brittle materials. Engineering Analysis
with Boundary Elements, 34, 122-129.
Muto, M., & Beck, J. (2008). Bayesian updating and model class. Journal of Vibration and Control, 14(1-2), 7”“34.
Nataf, A. (1962). Détermination des distributions de probabilités dont les marges sont données (in french). Paris: Académie des Sciences.
Nissen, S. (2003). Implementation of a fast artificial neural network library (FANN). Department of Computer Science University of Copenhagen (DIKU).
Oliveira, H., & Leonel, E. (2013). Cohesive crack growth modelling based on an alternative nonlinear BEM formulation. Engineering Fracture Mechanics, 111, 86-97.
Patelli, E., Panayirci, H. M., Broggi, M., Goller, B., Beaurepaire, P., Pradlwarter, H. J., & Schuëller, G. I. (2012). General purpose software for efficient uncertainty management of large finite element models. Finite Elements in Analysis and Design, 51, 31-48.
Portela, A., Aliabadi, M., & Rooke, D. (1992). The dual boundary element method: effective implementation for crack problems. International Journal for Numerical Methods in Engineering, 33, 1269-1287.
Saleh, A., & Aliabadi, M. (1995). Crack growth analysis in concrete using boundary element method. Engineering Fracture Mechanics, 51, 533-545.
Straub, D., & Papaioannou, I. (2015). Bayesian Updating with Structural Reliability Methods. Journal of Engineering Mechanics, 141(3), 04014134.
Zimmermann, T., Strauss, A., Lehký, D. D., & Keršner, Z. (2014). Stochastic fracture mechanical characteristics of concrete based on experiments and inverse analysis.
Construction and Building Materials, 73, 535-543.
Zuev, K. M., Beck, J. L., Au, S.-K., & Katafygiotis, L. S. (2012). Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions. Computers & Structures, 92-93, 283-296.
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.