CALIBRAÇÃO BAYESIANA DE UM MODELO ESTOCÁSTICO DE ELEMENTOS DE CONTORNO PARA A FRATURA NÃO-LINEAR DE COMPONENTES DE CONCRETO

Authors

  • Sérgio Gustavo Ferreira Cordeiro USP
  • Edson Denner Leonel USP
  • Pierre Beaurepaire Université Clermont Auvergne
  • Alaa Chateauneuf Université Clermont Auvergne

DOI:

https://doi.org/10.26512/ripe.v2i6.21473

Keywords:

Calibração Bayesiana. Método dos elementos de contorno. Modelo coesivo de fratura. Redes neurais artificiais.

Abstract

A fratura mecânica de peças estruturais de concreto é por natureza um processo incerto sendo muitas vezes observadas discrepâncias significativas de resultados experimentais sob condições de ensaio, em teoria, idênticas. Essas incertezas podem ser representadas a partir de modelos mecânicos estocásticos. No entanto, a calibração desses modelos baseada em dados experimentais nem sempre é uma tarefa fácil. Neste trabalho é apresentado um procedimento para a calibração de um modelo estocástico de fratura não-linear em peças de concreto. O modelo mecânico de fratura é baseado no método dos elementos de contorno e no modelo coesivo de fratura. Três diferentes leis coesivas foram adotadas na calibração do modelo estocástico. Os fundamentos sobre calibração Bayesiana de modelos são apresentados e um recente método denominado “Calibração Bayesiana utilizando confiabilidade estrutural” é discutido e aplicado em um problema de fratura de vigas de concreto. Através desse método é possível quantificar o ajuste entre os resultados experimentais e os resultados do modelo calibrado considerando as três leis coesivas. Portanto é possível afirmar qual das leis resultou em um melhor ajuste do modelo estocástico após a calibração. Para viabilizar o custo computacional do procedimento, redes neurais artificiais foram utilizadas para a meta-modelagem do problema. 

Downloads

Download data is not yet available.

References

Au, S.-K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16(4), 263-277.

Au, S.-K., & Beck, J. L. (2003). Subset Simulation and its Application to Seismic Risk Based on Dynamic Analysis. Journal of Engineering Mechanics, 129(8), 901-917.

Bayes, T. (1763). "An essay towards solving a problem in the doctrine of chances". Philosophical Transactions of the Royal Society of London, 53, 370-418.

Beck, J. L., & Katafygiotis, L. S. (1998). Updating models and their uncertainties. I: Bayesian statistical framework. Journal of Engineering Mechanics, 128(4), 380”“391.

Beck, J. L., & Yuen, K.-V. (2004). Model selection using response measurements: Bayesian probabilistic approach. Journal of Engineering Mechanics, 130(2), 192-203.

Beck, J., & Zuev, K. (2013). Asymptotically Independent Markov Sampling: a new MCMC scheme for Bayesian Inference. International Journal for Uncertainty Quantification, 3(2), 445-474.

Brebbia, C., & Dominguez, J. (1989). Boundary Elements: An introductory Course. New York: McGraw Hill.

Bucher, C., & Bourgund, U. (1990). A fast and efficient response surface approach for structural reliability problems. Journal of Structural Safety, 7(1), 57-66.

Calvi, A. (2005). “Uncertainty-based loads analysis for spacecraft: Finite element model validation and dynamic responses. Computers & Structures, 83(14), 1103-1112.

Chen, J., & Hong, H. (1999). Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series. Applied Mechanics Reviews, 52(1), 17-33.

Ching, J., & Chen, Y. (2007). Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging. Journal of Engineering Mechanics, 133(7), 816-832.

Cisilino, A., & Aliabadi, M. (1999). Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems. Engineering Fracture Mechanics, 63, 713-733.

Cordeiro, S., & Leonel, E. (2016). Fracture analysis of wood structures using a multi-region anisotropic boundary element formulation. CILAMCE.

Datta, B. (2002). Finite-element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems. Mechanical Systems and Signal Processing, 16(1), 83-96.

EN-12350-2. Testing fresh concrete ”“ Part 2: Slump-test (2009).

EN-14651. Test method for metallic fibered concrete ”“ measuring the flexural tensile strength (limit of proportionality (lop), residual) (2005).

Friswell, M. I., & Mottershead, J. E. (1995). “Finite element model updating in structural dynamics. Dordrecht, The Netherlands: Kluwer Academic.

Hillerborg, A., Modeer, M., & Petersson, P.-E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773-782.

Hills, R., Pilch, M., Dowding, K., Red-Horse, J., Paez, T., Babuška, I., & Tempone, R. (2008).

Validation Challenge Workshop. Computer Methods in Applied Mechanics and Engineering, 197(29-32), 2375-2380.

Hong, H., & Chen, J. (1988). Derivations of integral equations of elasticity. Journal of Engineering Mechanics, 116(6), 1028-1044.

Jaynes, E. (2003). Probability theory: The logic of science. Cambridge, UK: Cambridge University.

Katafygiotis, L. S., & Beck, J. L. (1998). Updating models and their uncertainties. II:Model identifiability. Journal of Engineering Mechanics, 124(4), 463-467.

Leonel, E. D., Venturini, W., & Chateauneuf, A. (2011). A BEM model applied to failure analysis of multi-fractured structures. Engineering Failure Analysis, 18, 1538-1549.

Leonel, E., & Venturini, W. (2010). Non-linear boundary element formulation with tangent operator to analyse crack propagation in quasi-brittle materials. Engineering Analysis

with Boundary Elements, 34, 122-129.

Muto, M., & Beck, J. (2008). Bayesian updating and model class. Journal of Vibration and Control, 14(1-2), 7”“34.

Nataf, A. (1962). Détermination des distributions de probabilités dont les marges sont données (in french). Paris: Académie des Sciences.

Nissen, S. (2003). Implementation of a fast artificial neural network library (FANN). Department of Computer Science University of Copenhagen (DIKU).

Oliveira, H., & Leonel, E. (2013). Cohesive crack growth modelling based on an alternative nonlinear BEM formulation. Engineering Fracture Mechanics, 111, 86-97.

Patelli, E., Panayirci, H. M., Broggi, M., Goller, B., Beaurepaire, P., Pradlwarter, H. J., & Schuëller, G. I. (2012). General purpose software for efficient uncertainty management of large finite element models. Finite Elements in Analysis and Design, 51, 31-48.

Portela, A., Aliabadi, M., & Rooke, D. (1992). The dual boundary element method: effective implementation for crack problems. International Journal for Numerical Methods in Engineering, 33, 1269-1287.

Saleh, A., & Aliabadi, M. (1995). Crack growth analysis in concrete using boundary element method. Engineering Fracture Mechanics, 51, 533-545.

Straub, D., & Papaioannou, I. (2015). Bayesian Updating with Structural Reliability Methods. Journal of Engineering Mechanics, 141(3), 04014134.

Zimmermann, T., Strauss, A., Lehký, D. D., & Keršner, Z. (2014). Stochastic fracture mechanical characteristics of concrete based on experiments and inverse analysis.

Construction and Building Materials, 73, 535-543.

Zuev, K. M., Beck, J. L., Au, S.-K., & Katafygiotis, L. S. (2012). Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions. Computers & Structures, 92-93, 283-296.

Published

2017-01-19

How to Cite

Cordeiro, S. G. F., Leonel, E. D., Beaurepaire, P., & Chateauneuf, A. (2017). CALIBRAÇÃO BAYESIANA DE UM MODELO ESTOCÁSTICO DE ELEMENTOS DE CONTORNO PARA A FRATURA NÃO-LINEAR DE COMPONENTES DE CONCRETO. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(6), 79–98. https://doi.org/10.26512/ripe.v2i6.21473