MÉTODO DOS ELEMENTOS FINITOS H-ADAPTATIVO: UMA NOVA TÉCNICA PARA PROJEÇÃO ISOTRÓPICA DO TAMANHO ELEMENTAR

Authors

  • Jucélio Tomás Pereira Universidade Federal do Paraná
  • Jéderson da Silva
  • João do Carmo Lopes Gonçalves

DOI:

https://doi.org/10.26512/ripe.v2i14.21360

Keywords:

Método dos elementos finitos. H-adaptatividade. Superconvergent Patch Recovery. Recuperação Quadrática do Erro.

Abstract

Devido à natureza aproximadora da solução fornecida pelo Método dos Elementos Finitos, são diversas as pesquisas que têm surgido com o objetivo de quantificar, controlar ou minimizar os erros causados pela discretização da solução. Nesse contexto, uma das alternativas é o emprego de processos h-adaptativos guiados por estimadores de erros a posteriori, os quais fornecem estimativas locais dos erros. Assim, com o objetivo de satisfazer um valor de erro limite com um custo computacional reduzido, propõe-se um novo método para projeção isotrópica do tamanho elementar, denominado Recuperação Quadrática do Erro. Neste, é desenvolvido o conceito de recuperação quadrática da densidade do erro em energia, o qual, em conjunto com a solução de um problema de otimização via Método do Lagrangeano, fornece uma expressão analítica para determinação do novo tamanho do elemento. A estimativa dos erros a posteriori baseada em recuperação é dirigida mediante a recuperação do gradiente pelo clássico método Superconvergente de Recuperação de Padrões (Superconvergent Patch Recovery) (Zienkiewicz e Zhu, 1992a, 1992b). A eficiência da metodologia proposta é comprovada através da aplicação em problemas lineares escalares de engenharia, sendo a implementação numérica e a geração da malha adaptada realizada respectivamente, pelos softwares Matlab e BAMG (Bidimensional Anisotropic Mesh Generator).

Downloads

Download data is not yet available.

References

Ainsworth, M., Oden, J. T., 2000. A Posteriori Error Estimation in Finite Element Analysis, 1. ed., John Wiley and Sons.

Barlow, J., 1976. Optimal stress locations in finite element models. International Journal for Numerical Methods in Engineering, v. 10, pp. 243”“251.

Benedetti, A., Miranda, S., & Ubertini, F., 2006. A posteriori error estimation based on the super convergent recovery by compatibility in patches. International Journal for Numerical Methods in Engineering, vol. 67, pp. 108”“131.

Boroomand, B., & Zienkiewicz, O. C., 1997. Recovery by equilibrium in patches. International Journal for Numerical Methods in Engineering, vol. 40, pp. 137”“164.

Castellazzi, G., Miranda, S., & Ubertini, F., 2010. Adaptivity based on the recovery by compatibility in patches. Finite Elements in Analysis and Design, vol. 46, pp. 379”“390.

Cook, R. D., Malkus, D. S., Plesha, M. E., & Witt, R. J., 2002. Concepts and applications of finite element analysis, John Wiley and Sons.

Díez, P., & Huerta, A., 1999. A unified approach to remeshing strategies for finite element hadaptivity. Computer Methods in Applied Mechanics and Engineering, vol. 176, pp. 215 ”“ 229.

Hecht, F., 2006. BAMG: Bidimensional Anisotropic Mesh Generator, draft version v1.00.

Huang, Y., & Yi, N., 2010. The Superconvergent Cluster Recovery Method. Journal of Scientific Computing, vol. 44, pp. 301”“322.

Mitchell, W. F., 2013. A collection of 2D elliptic problems for testing adaptive grid refinement algorithms. Applied Mathematics and Computation, vol. 220, pp. 350-364.

Onãte, E., & Bugeda, G., 1993. A study of mesh optimality criteria in adaptive finite element analysis. Engineering Computations, vol. 10, pp. 307”“321.

Prudhomme, S., Oden, J. T., Westermann, T., Bass, J., & Botkin, M. E., 2003. Practical methods for a posteriori error estimation in engineering applications. International Journal for Numerical Methods in Engineering, vol. 56, pp. 1193”“1224.

Reddy, J. N., 2006. An Introduction to the Finite Element Method. 3. ed., Mc Graw Hill.

Silva, J., Silva, F. E. C., Pereira, J. T. & Gonçalves, J. C. L., 2015. Análise de diferentes estimadores de erro a posteriori aplicados a problemas bidimensionais utilizando refino h-adaptativo. In: Congresso Nacional de Matemática Aplicada à Indústria (CNMAI), pp. 695 ”“ 704.

Ubertini, F., 2004. Patch recovery based on complementary energy. International Journal for Numerical Methods in Engineering, vol. 59, pp. 1501”“1538.

Wiberg, N. E., & Abdulwahab, F., 1992. An efficient postprocessing technique for stress problems based on superconvergent derivatives and equilibrium. Numerical Methods in Engineering, pp. 25”“32.

Wiberg, N. E., Abdulwahab, F., & Ziukas, S., 1994. Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. International Journal for Numerical Methods in Engineering, vol. 37, pp. 3417”“3440.

Wiberg, N. E., Abdulwahab, F., & Li, X. D., 1997. Error estimation and adaptive procedures based on Superconvergent Patch Recovery (SPR) techniques. Archives of Computational Methods in Engineering, vol. 4, pp. 203”“242.

Zhang, Z., & Naga, A., 2005. A new finite element gradient recovery method: Superconvergence Property. SIAM Journal on Numerical Analysis, vol. 26, pp. 1192”“1213.

Zhu, J. Z., & Zienkiewicz, O. C., 1988. Adaptive techniques in the finite element method. Communications in Apllied Numerical Methods, vol. 4, pp. 197”“204.

Zienkiewicz, O. C., 2006. The background of error estimation and adaptivity in finite element computations. Computer Methods in Applied Mechanics and Engineering, vol. 195, pp. 207”“213.

Zienkiewicz, O. C., Boroomand, B., & Zhu, J. Z., 1999. Recovery procedures in error estimation and adaptivity Part I: Adaptivity in linear problems. Computer Methods in Applied Mechanics and Engineering, vol. 176, pp. 111”“125.

Zienkiewicz, O. C., Taylor, R. L., 2000. The Finite Element Method. Volume 1: The Basis. Butterworth Heinemann.

Zienkiewicz, O. C., & Zhu, J. Z., 1987. A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods in Engineering, vol. 24, pp. 337”“357.

Zienkiewicz, O. C., & Zhu, J. Z., 1992a. The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. International Journal for Numerical Methods in Engineering, vol. 33, pp. 1331”“1364.

Zienkiewicz, O. C., & Zhu, J. Z., 1992b. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, vol. 33, pp.1365”“1382.

Published

2017-01-30

How to Cite

Pereira, J. T., da Silva, J., & Gonçalves, J. do C. L. (2017). MÉTODO DOS ELEMENTOS FINITOS H-ADAPTATIVO: UMA NOVA TÉCNICA PARA PROJEÇÃO ISOTRÓPICA DO TAMANHO ELEMENTAR. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(14), 18–37. https://doi.org/10.26512/ripe.v2i14.21360