MÉTODO CE/SE COM FUNÇÕES DE BASE POLINOMIAL DE SEGUNDA ORDEM PARA AS EQUAÇÕES DE SAINT VENANT UNIDIMENSIONAIS
DOI:
https://doi.org/10.26512/ripe.v2i12.21343Keywords:
Método CE/SE. Equações de Saint Venant. Polinômio de Taylor de 2a ordem.Abstract
O método dos elementos de conservação espaço-tempo e elementos de solução (CE/SE) é um método multidimensional robusto e acurado proposto por Chang em 1991. Fundamentado na resolução de leis de conservação, tal método é caracterizado por explorar, de modo conjunto, as formas integrais e diferenciais das leis de conservação. Apresenta-se, neste artigo, o desenvolvimento de um novo esquema CE/SE explícito para a solução das equações de Saint Venant unidimensionais, utilizando funções de base polinomiais de segunda ordem. Diferentemente dos esquemas tradicionais compostos por quatro variáveis de marcha, na presente formulação, as variáveis dinâmicas são aproximadas localmente por um polinômio de Taylor de segunda ordem, de modo que as equações resultantes são constituídas por seis incógnitas. As relações pertinentes à s duas variáveis adicionais são obtidas combinando-se as equações de continuidade e quantidade de movimento. Para demonstrar a acurácia, eficiência e robustez do método, problemas de ruptura de barragem, escoamentos subcríticos e transcríticos são simulados numericamente. Os resultados comprovam que o esquema proposto possui alta habilidade em capturar choques e descontinuidades.
Downloads
References
Chang, S. C., & To, W. W., 1991. A New Numerical Framework for Solving Conservation Laws - The Method of Space-Time Conservation Element and Solution Element. Technical Memo TM 104495, NASA, Lewis Research Center, NASA.
Chang, S. C., 1993. New Developments in the Method of Space-Time Conservation Element and Solution Element - Aplications to the Euler and Navier-Stokes Equations. Technical Memo TM 106226, NASA, Lewis Research Center, NASA.
Chang, S. C., 1995. The Method of Space-Time Conservation Element and Solution Element - A New Approach for Solving the Navier-Stokes and Euler Equations. Journal of Computational Physics, vol. 119, n. 2, pp. 295-324.
Chang, S. C., Wang, X, Y., & Chow, C. Y., 1999. The Space-Time Conservation Element and Solution Element Method: A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws. Journal of Computational Physics, vol. 156, n. 1, pp. 89-136.
Chang, S. C.,Wang, X, Y., & To,W.W., 2000. Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Convection Diffusion Problems. Journal of Computational Physics, vol. 165, n. 1, pp. 189-215.
Chang, S. C., & To, W. W., 2010. A New Approach for Constructing Highly Stable High Order CESE Schemes. Technical Memo TM 104495, NASA, Lewis Research Center, NASA.
Chaudhry, M. H., 2008. Open-Channel Flow - Second Edition. Springer Science.
Delestre, O., Lucas, C., Ksinant, P. A., Darboux, F., Laguerre, C., Tuoi Vo, T. N, James, F., & Cordier, S., 2013. Swashes: a compilation of shallow water analytic solutions for hydraulic and environmental studies. International Journal for Numerical Methods in Fluids, vol. 72, n. 3, pp. 269-300.
Liu, H., Wang, H., Liu, S., Hu, C., Ding, Y., & Zhang, J., 2015. Lattice Boltzmann method for the Saint-Venant equations. Journal of Hydrology, vol. 524, pp. 411-416.
Molls, T., &Molls, F., 1998. Space-time conservation method applied to Saint Venant equations. Journal of Hydraulic Engineering, vol. 124, n. 5, pp. 501-508.
Stoker, J. J., 1957. Water Waves: The Mathematical Theory with Applications. Interscience Publishers.
Zhang, Y., Zeng, Z., & Chen, J., 2012. The improved space-time conservation element and solution element scheme for two-dimensional dam-break flow simulation. International Journal for Numerical Methods in Fluids, vol. 68, n. 5, pp. 605-624.
Zhang, Z. C., Yu, S., Chang, S. C., Himansu, A., & Jorgenson, P, 1999. A modified space-time conservation element and solution element method for Euler and Navier-Stokes equations. In 14th Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, Norfolk, VA, U.S.A.
Yang, S., Kurganov, A., & Liu, Y., 2015. Well-balanced central schemes on overlapping cells with constant subtraction techniques for the Saint-Venant shallow water system. Journal of Scientific Computing, vol. 63, n. 3, pp. 678-698.
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.