TWO-DIMENSIONAL SIMULATIONS VIA FINITE ELEMENTS OF DIRECT ETHANOL FUEL CELLS (DEFC)

Authors

  • Marcelo Maraschin de Souza UFSC
  • Ranon de Souza Gomes UFSC
  • Alvaro Luiz De Bortoli UFSC

DOI:

https://doi.org/10.26512/ripe.v2i11.21271

Keywords:

PEM Fuel Cell. Ethanol. Finite Element Method. Modeling.

Abstract

 A solution to the growing energy demand and depletion of oil supplies is its best use,along with the development of renewable sources according to the needs and possibilities of each user. An attractive alternative is the fuel cell. Fuel cells provide clean energy and with high efficiency in a wide variety of applications. In addition, they enable greater reliability in power supply with less emissions of pollutants in the air. The present work develops a two-dimensional model for a direct ethanol fuel cell. A code is developed in Fortran90 using the finite element method to calculate the flow in different layers of the cell (input and output channels, diffusion layer and catalyst layer). The model takes into account the losses overpotentials at the anode and at the cathode, providing a better understanding of the physical and chemical behavior within the cell, and about the conversion of chemical energy into electricity. This corresponds to the main contribution of the present work.

Downloads

Download data is not yet available.

References

Abdullah, S, Kamarudin, S.K., Hasran, U.A., Masdar, M.S. & Daud, W.R.W., 2014. Modeling

and simulation of a direct ethanol fuel cell: An overview, Journal of Power Sources, vol. 262,

pp. 401-406.

Abdullah, S, Kamarudin, S.K., Hasran, U.A., Masdar, M.S. & Daud, W.R.W., 2015. Development

of a conceptual design model of a direct ethanol fuel cell (DEFC), International Journal

of Hydrogen Energy, vol. 40, n. 35, pp. 11943-11948.

Al-Baghdadi, M.A., 2005. Modeling of proton exchange membrane fuel cell performance based

on semi-empirical equations, Renewable Energy, vol. 30, n. 10, pp. 1587-1599.

Andreadis, G. & Tsiakaras, P., 2006. Ethanol crossover and direct ethanol PEM fuel cell performance

modeling and experimental validation, Chemical Engineering Science, vol. 61, n. 22,

pp. 7497-7508.

Andreadis, G., Podias, A.K.M. & Tsiakaras, P., 2008. The effect of the parasitic current on the

direct ethanol PEM fuel cell operation, Journal of Power Sources, vol. 181, n. 2, pp. 214-227.

Bard, A.J. & Faulkner, L.R., 2001. Electrochemical methods: fundamentals and applications,

Wiley: New York, ed. 2.

Brenner, S.C. & Scott, R., 2008. The mathematical theory of finite element methods, Springer-

Verlag, New York.

Cheddie, D.F. & Munroe, N.D.H., 2006. Three dimensional modeling of high temperature PEM

fuel cells, Journal of Power Sources, vol. 160, n. 1, pp. 215-223.

Colmati, F., Antolini, E & Gonzalez, E.R., 2006. Effect of temperature on the mechanism of

ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts, Journal of Power

Sources, vol. 157, n. 1, pp. 98-103.

Farhat, Z.N, 2004. Modeling of catalyst layer micro structural refinement and catalyst utilization

in a PEM fuel cell, Journal of Power Sources, vol. 138, n. 1, pp. 68-78.

Futerko, P. & Hsing, I-M, 2000. Two-dimensional finite-element method study of the resistance

of membranes in polymer electrolyte fuel cells, Electrochimica Acta, vol. 45, n. 11, pp. 1741-

Ge, J. & Liu, H., 2007. A three-dimensional two-phase flow model for a liquid-fed direct

methanol fuel cell, Journal of Power Sources, vol. 163, n. 2, pp. 907-915.

Goel, J. & Basu, S., 2015. Mathematical modeling and experimental validation of direct ethanol

fuel cell, International Journal of Hydrogen Energy, vol. 40, n. 41, pp. 14405-14415.

Heysiattalab, S. & Shakeri, M., 2011. 2D analytical model for direct ethanol fuel cell performance

prediction, Smart Grid and Renewable Energy, vol. 2, n. 4, pp. 427-433.

Johnson, C., 1987. Numerical solution of partial differential equations by the finite element

method, Dover Publications.

Kareemulla, D. & Jayanti, S., 2009. Comprehensive one-dimensional, semi-analytical, mathematical

model for liquid-feed polymer electrolyte membrane direct methanol fuel cells, Journal

of Power Sources, vol. 188, n. 2, pp. 367-378.

Layton, W.J., 2008. Introduction to the numerical analysis of incompressible viscous flows,

Society for Industrial and Applied Mathematics.

Liu, W. & Wang, C.-Y., 2007. Three-dimensional simulations of liquid feed direct methanol

fuel cells, Journal of the Electrochemical Society, vol. 154, n. 3, pp. B352-B361.

Memming, R. & Bahnemann, D., 2015. Semiconductor electrochemistry. John Wiley & Sons.

Pramanik, H. & Basu, S., 2010. Modeling and experimental validation of overpotentials of a

direct ethanol fuel cell, Chemical Engineering and Processing: Process Intensification, vol. 49,

n. 7, pp. 635-642.

Suresh, N.S. & Jayanti, S., 2011. Cross-over and performance modeling of liquid-feed polymer

electrolyte membrane direct ethanol fuel cells, International Journal of Hydrogen Energy, vol.

, n. 22, pp. 14648-14658.

Yuan, X.-Z. R., Song, C., Wang, H. & Zhang, J., 2009. Electrochemical impedance spectroscopy

in PEM fuel cells: fundamentals and applications, Springer Science & Business Media.

Downloads

Published

2017-01-10

How to Cite

Souza, M. M. de, Gomes, R. de S., & De Bortoli, A. L. (2017). TWO-DIMENSIONAL SIMULATIONS VIA FINITE ELEMENTS OF DIRECT ETHANOL FUEL CELLS (DEFC). Revista Interdisciplinar De Pesquisa Em Engenharia, 2(11), 129–142. https://doi.org/10.26512/ripe.v2i11.21271