PARAMETRIC OPTIMIZATION OF A PIEZOELECTRIC ACTUATOR BONDED TO AN ISOTROPIC THIN PLATE

Authors

  • Juliano F. Gonçalves UFRGS
  • Tales V. Lisbôa UFRGS
  • Filipe P. Geiger UFRGS
  • Daniel M. De Leon FURG

DOI:

https://doi.org/10.26512/ripe.v2i24.20976

Keywords:

Thin plates. Parametric optimization. Piezoelectric actuators.

Abstract

his paper presents a parametric optimization procedure in order to obtain the best position of an actuator bonded to a thin plate. The semi-analytical static response is determined by means of the pb-2 Rayleigh-Ritz Method. The design parameters for the optimization problem are chosen as the position (2-D) and the orientation of a rectangular shaped actuator. The electric-mechanical coupling influence is represented as mechanical forces applied to the plate’s reference surface. The main objective of this work is to find the optimal design sets which would produce a mechanical loading condition that minimizes the transverse displacement of a given point in the plate. The methodology is applied and solutions are obtained for several boundary plate conditions.

Downloads

Download data is not yet available.

References

Arora, J. S., 2004. Introduction to optimum design, Elsevier, UK.

Bhat, R. B., 1985. Plate Deflections using Orthogonal Polynomials. Journal of Engineering Mechanics, 111(11):1301”“1309.

Dym, C. L., & Shames, I. H. 2013. Solid Mechanics: A Variational Approach. Augmented Edition Springer Science+Business Media, New York.

High, J. W. & Wilkie, W. K., 2003. Method of fabricating NASA-standard macro-fiber composite piezoelectric actuators.

Liew, K. M., & Lim, H. K., Tan, M. J., & He, X. Q., 2002. Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method. Computational Mechanics, vol. 29, n. 6, pp. 486-497.

Liew, K. M., & Wang, C. M., 1993. pb-2 Rayleigh-Ritz Method for General Plate Analysis, Engineering Structures, 15(1):55”“60.

Liew, K. M., & Xiang, Y., Kitipornchai, S, 1993. Transverse Vibration of Thick Rectangular Plates-I. Comprehensive Sets of Boundary Conditions, Computers & Structures, 49(1):1”“29.

Nguyen, Q., & Tong, L., 2004. Shape control of smart composite plate with non-rectangular piezoelectric actuators. Composite structures, vol. 66, n. 1, pp. 207-214.

Padoin, E., Fonseca, J. S. O., Perondi, E. A., & Menuzzi, O., 2015. Optimal placement of piezoelectric macro fiber composite patches on composite plates for vibration suppression. Latin American Journal of Solids and Structures, vol. 12, n. 5, pp. 925-947.

Reddy, J. N., 2007. Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton. Singh, A. V., & Elaghabash, Y., 2003. On Finite Displacement Analysis of Quadrangular Plates, International Journal of Non-Linear Mechanics, 38(8):1149”“1162.

Sun, D., & Tong, L., 2005. Design optimization of piezoelectric actuator patterns for static shape control of smart plates. Smart materials and structures, vol. 14, n. 6, pp. 1353.

Downloads

Published

2017-02-08

How to Cite

Gonçalves, J. F., Lisbôa, T. V., Geiger, F. P., & M. De Leon, D. (2017). PARAMETRIC OPTIMIZATION OF A PIEZOELECTRIC ACTUATOR BONDED TO AN ISOTROPIC THIN PLATE. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(24), 1–12. https://doi.org/10.26512/ripe.v2i24.20976