NUMERICAL STUDY OF THE LIQUID RESIN INFUSION PROCESS (LRI) USING FLUX MESH
DOI:
https://doi.org/10.26512/ripe.v5i1.19102Keywords:
Liquid Resin Infusion. Flow mesh. Composite. Numerical simulation. OpenFOAM.Abstract
The present work is dedicated to numerically study problems involving the Liquid Resin Infusion (LRI) process in thick composites. This technique uses fibers to obtain polymeric composites that can be applied in various lines of the industry and engineering. In this way, there is a great interest in improving this process to obtain a final product with physical and mechanical properties that meet the requirements of the current market. This study aims to analyze the flow of the resin inside the mold and to optimize the geometry, from the length of the flux mesh and the relationship between the permeabilities Kxx/Kzz. The flow mesh is a high permeability fabric and is employed during the LRI molding process to facilitate infiltration of the resin through the fibrous area. Numerical simulations were performed in OpenFOAM free software and the creation of the geometry and the mesh in the GMSH. The finite volume formulation of OpenFOAM was used for the discretization of the transport equations describing the resin flow inside the mold and the treatment of the interface between the two fluids (resin-air) is solved by the Volume of Fluid (VOF) method. In this paper, results for a Kxx/Kzz ratio and different flow mesh lengths were presented. By the presented results, one can find a way to generalize the study, and thus, to obtain the ideal size of the flow mesh for any length of mold.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.