OTIMIZAÇÃO COM ALGORITMO BIO-INSPIRADO DE CONTROLE DE TRÁFEGO EM SISTEMAS DE GRUPOS DE ELEVADORES
DOI:
https://doi.org/10.26512/ripe.v2i9.15034Abstract
Resumo. Este artigo tem como objetivo apresentar a implementação de uma técnica de otimização bioinspirada como solução ao problema de controle de tráfego em sistemas de grupos de elevadores (EGCS). A técnica de controle usada é o algoritmo de otimização por inteligência de enxame (PSO - swarm optimization particle) de tipo binário. A ideia é que o algoritmo escolha o melhor elevador para um usuário que faz uma chamada de serviço em um
sistema de controle destino (DCS ”“ destination control system). Para a escolha do elevador o algoritmo tem uma função custo que considera as variáveis: (1) tempo de espera; (2) tempo de voo; (3) capacidade do elevador; (4) número de paradas alocadas; (5) número de paradas (baseado nas chamadas que são asignadas) para cada elevador. Estes parâmetros são ponderados de acordo com sua importância e inferência na seleção do melhor elevador. Assim, o sistema seleciona de todas as possíveis soluções encontradas a solução que apresente
o melhor valor de aptidão (a solução representa o elevador ou os elevadores selecionado para atender a atual chamada).
Downloads
References
Rockwell Automation. (2005). Arena Basic User´s guide.
Atsuya Fujino, T. T. (1997). An Elevator Group Control System with Floor-Attribute Control Method and System Optimization Using Genetic Algorithms. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.
Bailey, A., Ombuki-berman, B., & Asobiela, S. (2013). Discrete PSO for the Uncapacitated Single Allocation Hub Location Problem. European Journal of Operational Research.
Barney, G. (2003). Elevator Traffic Handbook Theory And Practice.
Berna Bolata, O. A. (2013). A particle swarm optimization algorithm for optimal car-call allocation in elevator group control systems. Applied Soft Computing.
Chuansheng, W., & Chunping, C. (2010). Design of Elevator Group Control System Simulation Platform Based on Shortest Distance Algorithm. International Conference on Electrical and Control Engineering.
Cortés, P., Larrañeta, J., Onieva, L., Muñuzuri, J., & Fernández, I. (2002). Algoritmos de Optimización en Sistemas de Transporte Vertical. II Conferencia de Ingeniería de Organización.
Crespi, V., Galstyan, A., & Lerman, K. (2008). Top”“Down vs Bottom”“up Methodologies in Multi”“Agent System Design. Autonomous Robots.
Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. International Symposium Micro Machine and Human Science. Nagoya, Japan: IEEE.
Eberhart, R., & Kennedy, J. (1997). A discrete binary version of the particle swarm algorithm. International Conference on Systems, Man, and Cybernetics.
Forero, A. P., Muñoz, D. M., Carvalho, G. C., & Llanos, C. (2011). fuzzy elevator group control system using technology for industrial automation. 21st Brazilian Congress of Mechanical Engineering - COBEM.
Gu, Y. (2012). Multi-Objective Optimization of Multi-Agent Elevator Group Control System Based on Real-Time Particle Swarm Optimization Algorithm. Engineering, Vol. 4 No. 7.
Jafferi Jamaludin, N. A. (2010). An Elevator Group Control System With a Self-Tuning Fuzzy Logic Group Controller. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.
Jian Liu, C. W. (2010). A Hybrid Control for Elevator Group System. Third International Workshop on Advanced Computational Intelligence.
joaquin . fernandez, p. c. (2009). fuzzy logic-based controller for vertical traffic detection purpose.
Marja-Liisa S. (s.f.). “Planning and Control Models for Elevators in High-Rise Buildings”. KONE Corporation P.O. Box 8 SF-00331 Helsinki, Finland.
Markon, K. H. (2006). “ Control of Traffic Systems".
Markon, S., Kita, H., Kise, H., & Bartz-Beielstein, T. (2006). Control of Traffic Systems in Buildings.
P Cortés, J. L. (2002). Algoritmos de Optimización en Sistemas de Transporte Vertical. II Conferencia de Ingeniería de Organización.
Patiño, A. (2010). Estudo e simulação de técnicas de controle de tráfego de grupo de elevadores usando automação industrial. Unb- Universidade de Brasilia.
R., E., & J., K. (1995). “A new optimizer using particle swarm theory”. International Symposium Micro Machine and Human Science. Nagoya, Japan: IEEE.
Serapião, A. B. (2009). FUNDAMENTOS DE OTIMIZAÇÃO POR INTELIGÊNCIA DE ENXAMES: UMA VISÃO GERAL. Revista Controle & Automação/Vol.20.
Siikonen, M.-L. (2000). On traffic planning methodology. International Congress on Vertical Tranportation. Berlin.
Valentino Crespi, A. G. (2007). Top”“Down vs Bottom”“up Methodologies in Multi”“Agent System Design.
Wu, S., & Wu, G. (2012). A Novel Elevator Group Control Scheduling Algorithm based on Pseudo Differential Feedback. Proceeding of the IEEE, International Conference on Automation and Logistics.
Y Zhou, Q. Y. (2004). Dynamically Dispatching Method Aiming to Reduce the Servicing Time in the EGCS. Proceedings of the 5’WorId Congress on Intelligent Control and Automation.
Yu, L., Zhou, J., Mabu, S., Hirasawa, K., Hu, J., & Markon, S. (2007). Double-Deck Elevator Group Supervisory Control System Using Genetic Network Programming with Ant Colony Optimization with Evaporation. IEEE Congress on Evolutionary Computation.
Zhou, Y., & Ye, Q. (2004). Dynamically Dispatching Method Aiming to Reduce the Servicing Time in the EGCS. Proceedings of the 5’WorId Congress on Intelligent Control and Automation.
Downloads
Published
How to Cite
Issue
Section
License
Given the public access policy of the journal, the use of the published texts is free, with the obligation of recognizing the original authorship and the first publication in this journal. The authors of the published contributions are entirely and exclusively responsible for their contents.
1. The authors authorize the publication of the article in this journal.
2. The authors guarantee that the contribution is original, and take full responsibility for its content in case of impugnation by third parties.
3. The authors guarantee that the contribution is not under evaluation in another journal.
4. The authors keep the copyright and convey to the journal the right of first publication, the work being licensed under a Creative Commons Attribution License-BY.
5. The authors are allowed and stimulated to publicize and distribute their work on-line after the publication in the journal.
6. The authors of the approved works authorize the journal to distribute their content, after publication, for reproduction in content indexes, virtual libraries and similars.
7. The editors reserve the right to make adjustments to the text and to adequate the article to the editorial rules of the journal.