EFEITO DE TRATAMENTOS TERMOMECÂNICOS SOBRE A RESISTÊNCIA BIOLÓGICA DA MADEIRA PERANTE O ATAQUE DE FUNGOS

Authors

  • R. M. Leão Universidade de Brasília
  • A. S Moura Universidade de Brasília
  • Sandra M Luz Universidade de Brasília
  • C.H. S.H. Del Menezzi Universidade de Brasília

DOI:

https://doi.org/10.26512/ripe.v3i1.14410

Keywords:

Thermomechanical treatment. wood. biological resistance.

Abstract

The thermomechanical treatment is a process that allows wood densification, improving mechanical properties and reducing hygroscopicity. The objective of this study was to characterize and evaluate the biological resistance of wood about the attack of fungus that causes brown rot fungi and white rot fungi. The samples were subjected the thermomechanical treatment was done in a hydraulic press at 140 to 180°C. It was evaluated the biological resistance this wood about the attack of fungus that cause brown-rot fungi (Gloeophyllum trabeum) and white-rot fungi (Trametes versicolor). The samples were characterized by analysis of FTIR (Fourier transformer infrared spectroscopy), SEM (scanning electron microscopy) and TGA. The FTIR spectra analysis clearly identified a reduction of the band at 1700cm-1 with the thermomechanical treatment and attacked by fungus, occurring decrease of the lignin. However, the SEM characterization showed changed the morphology of samples. The thermogravimetric (TG) curves showed good thermal stability for the samples with thermomechanical treatment. It also showed a reduction the equilibrium moisture, revealed that the thermal treatments being adopted were effective in reducing hygroscopicity of wood and improving their thermal properties.

Downloads

Download data is not yet available.

References

CALLUM, A. S. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons; 2006.

VAZ, S. S. Resistência biológica de painéis compensados de Trattinnickia burseraefolia (Mart.) Willd produzidos com lâminas modificadas Termomecanicamente. Monografia em Engenheiro Florestal, Universidade de Brasília, 2013.

FENGEL, D.; WEGENER, G. Wood: Chemistry, Ultrastructure, Reactions. Germany: Walter de Gruyter, 2003.

MONTE, J. R. Sacarificação da polpa celulósica do bagaço de cana-de-açúcar com celulases e xilanases de Thermoascus aurantiacus. Dissertação de Mestrado em Biotecnologia Industrial, Universidade de São Paulo, 2009.

KUMAR, R.; OBRAI, S.; SHARMA, A. Chemical modifications of natural fiber for composite material. Pelagia Research Library: Der Chemica Sinica, v. 2, 219-228,

COELHO, T. C. Avaliação das condições de imobilização de células de Candida guilliermondii FTI 20037 em bucha vegetal (Luffa cylindrica) visando à produção xilitol. Dissertação de Mestrado em Biotecnologia Industrial, Universidade de São Paulo, 2007.

SILVEIRA, M. S. Aproveitamento das cascas de coco verde para produção de briquete em salvador. Dissertação de Mestrado em Gerenciamento e Tecnologias Ambientais no Processo Produtivo, Universidade Federal da Bahia, 2008.

MASARIN, F. Estudo da degradação de lignina iniciada por metabólitos extracelulares extraídos de cultivos de Ceriporiopsis subvermispora. Dissertação de Mestrado em Biotecnologia industrial, Universidade de São Paulo, 2010.

ARRUDA, L. M. Modificação termomecânica da madeira de amescla (trattinnickia burseraefolia (mart.) willd.): efeito sobre as propriedades de lâminas e compensados. Dissertação de Mestrado em Ciências Florestais, Universidade de Brasília, 2012.

ADEL, A. M et al. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource Technology, v. 101, 4446”“4455, 2010.

JONOOBI, M. et al. Chemical composition, crystallinity, and termal degradation of bleached end unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResouces, v. 4, 26-639, 2009.

ROSA, M. F. et al. Cellulose nanowhiskers from coconut husk fibers: Effect of

preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, v. 81, 83”“92, 2010.

HERRERA-FRANCO, P. J.; VALADEZ-GONZÁLEZ, A. A study of the mechanical properties of short natural-fiber reinforced composites. Composites: Part B, v. 36, 597”“608, 2005.

BENINI, K. C. C. C. Desenvolvimento e caracterização de compósitos poliméricos reforçados com fibras lignocelulósicas: hips/fibra da casca do coco verde e bagaço de cana de açúcar. Dissertação de Mestrado em Engenharia Mecânica, Universidade Estadual Paulista, 2011.

ALVES, M. V. S et al. Resistência natural de seis espécies de madeiras da região amazônica a fungos apodrecedores, em ensaios de laboratório. Ciência Florestal, Santa Maria, v. 16, 17-26, 2006.

CORDEIRO, R. C.; VIANA, H. M.; SIMÃO R. A. Melhoria das propriedades mecânicas de compósitos de PP com fibras naturais devido ao tratamento superficial por plasma da fase de reforço. PEMM/COPPE/UFRJ, p. 1-2, 2012.

ZIGLIO, A. C. Uso da capsaicina como preservante de madeiras ao ataque de fungo apodrecedor. Dissertação de Mestrado em Ciência, Universidade de São Paulo, 2010.

LUZ, S. M. et al. Cellulose and cellulignin from surgarne bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties. Composites: Part A, v. 39, 1362”“1369, 2008.

LEÃO, R. M. et al. Surface Treatment of Coconut Fiber and its Application in Composite Materials for Reinforcement of Polypropylene. Journal of Natural Fiber, v. 12, p.574-586, 2015.

YANG, H. S. et al. Properties of lignocellulosic material felled polypropylene bio-composites made with diferente manufacturing processes. Polymer Testing, v.25, 668-676, 2006.

DEVALLENCOURT, C. et al. Characterization of recycled celluloses: thermogravimetry/Fourier transform infra-red coupling and thermogravimetry investigations. Polymer Degradation and Stability, v. 52, 327-334, 1996.

Published

2017-08-25

How to Cite

Leão, R. M., Moura, A. S., Luz, S. M., & Del Menezzi, C. S. (2017). EFEITO DE TRATAMENTOS TERMOMECÂNICOS SOBRE A RESISTÊNCIA BIOLÓGICA DA MADEIRA PERANTE O ATAQUE DE FUNGOS. Revista Interdisciplinar De Pesquisa Em Engenharia, 3(1). https://doi.org/10.26512/ripe.v3i1.14410