• Cássio Aguiar Universidade Federal do Rio Grande do Sul
  • Samir Maghous Universidade Federal do Rio Grande do Sul




Fractures. Micromechanics. Viscoelasticity.


This paper presents a micromechanical approach to overall viscoelastic properties of randomly fractured media. Unlike cracks, fractures can be viewed as interfaces that are able to transfer efforts. Their specific behavior under shear and normal stresses is a fundamental component of the deformation and fracture in brittle materials such as geomaterials. Based on the implementation of the Mori-Tanaka linear homogenization scheme, the first part of the analysis is dedicated to derive close-form expressions for the homogenized elastic stiffness tensor of the fractured medium. The effective viscoelastic behavior is then assessed from the elastic homogenization in Laplace framework and making use of the correspondence principle. In this context, a specific procedure for performing the inverse of Carson-Laplace transform is developed, allowing for the analytical derivation of homogenized relaxation and creep tensors. It is shown that the viscoelastic behavior can generally be described by means of a generalized Maxwell rheological model. For practical implementation in structural analyses, an approximation of the effective behavior by a Burger”“like model is formulated in the last part of the paper.


Não há dados estatísticos.


Advani, S. G., Tucker III, C. L., 1987. The use of tensors to describe and predict fiber orientation in short fiber composites. Journal of rheology. vol. 31, pp. 751”“784.

Aguiar, C. B., 2016. Abordagem micromecânica da propagação de fraturas em meios elásticos e viscoelásticos. Master’s thesis, Federal University of Rio Grande do Sul/Porto Alegre.

Barton, N., Bandis, S., Bakhtar, K., 1985. Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences, vol. 22, pp. 121”“140.

Bland, D. R., 1960. The theory of linear viscoelasticity. Pergamon Press.

Budiansky, B., O’Connell, R. J., 1976. Elastic moduli of a cracked solid. International Jounal of Solids Structures, Pergamon Press, v. 12, pp. 81”“97.

Dormieux, L., Kondo, D., Ulm, F. J.,2006. Microporomechanics. John Wiley & Sons.

Dutra, V. F. P., 2012, Um modelo constitutivo para o concreto reforçado com fibras de aço via teoria da homogeneização. PhD thesis, Federal Univesity of Rio Grande do Sul/Porto Alegre.

Le, Q. V., Meftah, F., He, Q. ”“C., Le Pape, Y., 2007. Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori-Tanaka homogenization scheme and a discrete microscopic retardation spectrum. Mechanics of Time-Dependent Materials, vol. 11, n. 3, pp. 309”“331.

Maghous, S., Bernaud, D., Fréarad, J., Garnier D., 2008. Elastoplastic behavior of jointed rock masses as homogenized media and finite element analysis. International Journal of Rock Mechanics and Mining Sciences, vol. 45, n. 8, pp. 1273”“1286.

Maghous, S., Dormieux, L., Kondo, D., Shao, J. F., 2011. Micromechanics approach to poroelastic behavior of a jointed rock. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 37, pp. 111”“129.

Maghous, S., Lorenci, G., Bittencourt E., 2014. Effective poroelastic behavior of a jointed rock. Mechanics Research Communications, vol. 509, pp. 54”“69

Nemat-Nasser, Hori, M., 1993. Overall properties of heterogeneous materials. North Holland

Nguyen, S. T., 2010, Propagation de fissures et endommagement par microfissures dans un milieu viscoélastique linéaire non vieellissant. PhD thesis, University of Paris-Est/ Champs-sur-Marne.

Nguyen, S. T., Dormieux, L., Le Pape, Y., Sanhuja, J., 2011, A burger model for the effective behavior of a microcracked viscoelastic solid. International Journal of Damage Mechanics, vol. 20, n. 8, pp. 1116”“1129

Nguyen, S. T., Jeannin, L., Dormieux, L L., Renard, F., 2013, Fracturing of viscoelastic geomaterials and application to sedimentary layered rocks. Mechanics Research Communications, vol. 49, pp. 50”“56

Mura, T., 1987. Micromechanics of defects in solids. Kluwer Academic Publishers.

Selençon, J., 2009. Viscoélasticité pour le calcul des structures. L’École Polytechnique.




Como Citar

Aguiar, C., & Maghous, S. (2017). MICROMECHANICAL APPROACH TO VISCOELASTIC BEHAVIOR OF FRACTURED MEDIA. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(29), 54–73. https://doi.org/10.26512/ripe.v2i29.21790