3D FINITE ELEMENT MODEL FOR THERMO-POROMECHANICAL DEFORMATION IN SEDIMENTARY BASINS
DOI:
https://doi.org/10.26512/ripe.v2i21.21695Palavras-chave:
Sedimentary basin. Thermo-poro-mechanics. Thermo-poro-elasto-visco-plasticity.Resumo
Sedimentary basins form when an appreciable amount of sediments are deposited along geological time and transformed into rock through natural phenomena known as diagenesis. Compaction of sediments, fluid and thermal flows are fundamental coupled processes in sedimentary basin modelling. Purely mechanical phenomena prevail in the upper layers involving pore fluid expulsion and rearrangement of solid particles, while chemomechanical compaction resulting from Intergranular Pressure-Solution (IPS) dominates for deeper burial as stress and temperature increase. The thermal evolution of the basin may substantially affect both processes as heat modifies fluid viscosity and physicochemical properties of minerals, thus affecting fluid flow and mineral stability. The aim of the present contribution is to provide a comprehensive 3D framework for constitutive and numerical modelling of thermo-poro-mechanical deformation during diagenesis. Purely mechanical and chemo-mechanical deformations are respectively modelled by means of poroplastic and poroviscoplastic models. The numerical simulations are performed through the finite element method with a shared memory multiprocessing interface. The sedimentary basin is modelled as a fully saturated thermo-poro-elasto-visco-plastic material undergoing large strains. Special attention is given to temperature effects on the deformation history of the basin.
Downloads
Referências
Abdulagatova, Z., Abdulagatov, I.M., Emirov, V.N., 2009. Effect of temperature and pressure on the thermal conductivity of sandtone. International Journal of Rock Mechanics & Mining Sciences, vol. 46, pp. 1055−1071.
Adachi, T.; Oka, F., 1982. Constitutive equations for normally consolidated clay based on elasto-viscoplasticity. Soils and Foundations, vol. 22, n. 4, pp. 57−70.
Barthélémy, J. F.; Dormieux, L.; Maghous, S., 2003. Micromechanical approach to the modelling of compaction at large strains. Computers and Geotechnics, vol. 30, pp. 321-338.
Bathe, K.J., 1996. Finite element procedures. Prentice-Hall.
Bernaud, D., Deudé, V., Dormieux, L., Maghous, S., Schmitt, D.P., 2002. Evolution of elastic properties in finite poroplasticity and finite element analysis. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 26, pp. 845”“871.
Bernaud, D., Dormieux, L., Maghous, S., 2006. A constitutive and numerical model for mechanical compaction in sedimentary basins. Computers and Geotechnics, vol. 33, pp. 316”“329.
Bjorlykke, K., 2010. Petroleum geoscience: from sedimentary environments to rock physics. Springer: Berlin.
Brüch, A., Maghous, S., Ribeiro, F.L.B., Dormieux, L., 2016. A constitutive model for mechanical and chemo-mechanical compaction in sedimentary basins and finite element analysis. International Journal for Numerical and Analytical Methods in Geomechanics, DOI: 10.1002/nag.2530.
Chapman, B., Jost, G., Pas, R. van der, 2008. Using OpenMP: portable shared memory parallel programming. The MIT Press: Cambridge.
Coussy, O., 2004. Poromechanics. John Wiley & Sons Ltd: Chichester.
Deudé, V.; Dormieux, L.; Maghous, S.; Barthélémy, J. F.; Bernaud, D., 2004. Compaction process in sedimentary basins: the role of stiffness increase and hardening induced by large plastic strains. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 28, pp. 1279-1303.
Dormieux, L., Maghous, S., 2000. Evolution of elastic properties in finite poroplasticity. C.R. Acad. Sci. Paris, vol. 328, n. IIb, pp. 593”“600.
Ferrero, C., Gallagher, K., 2002. Stochastic thermal history modelling. 1. Constraining heat flow histories and their uncertainty. Marine and Petroleum Geology, vol. 19, pp. 633”“648.
Hamilton, E.L., 1959. Thickness and consolidation of deep-sea sediments. Bulletin of the Geological Society of America, vol. 70, pp. 1399”“1424.
Hashin, Z., 1983. Analysis of composite materials - a survey. Journal of Applied Mechanics, vol. 50, pp. 481-505.
IAPWS, 1998. Revised release on the IAPS formulation 1985 for the thermal conductivity of ordinary water substance. Releases of the International Association for the Properties of Water and Steam.
Palumbo, F., Main, I.G., Zito, G., 1999. The thermal evolution of sedimentary basins and its effect on the maturation of hydrocarbons. Geophysical Journal International, vol. 139, pp. 248”“260.
Perzyna, P., 1966. Fundamental problems in viscoplasticity. Advances in Applied Mechanics, vol. 9, pp. 243”“277.
Saad, Y., 2003. Iterative Methods for Sparse Linear Systems. 2nd ed. Society for Industrial and Applied Mathematics: Philadelphia.
Schmidt, V., McDonald, D.A., 1979. The role of secondary porosity in the course of sandstone diagenesis. Aspects of Diagenesis, vol. 26, pp. 175”“207.
Schneider, F., Potdevin, J.L., Wolf, S., Faille, I., 1996. Mechanical and chemical compaction model for sedimentary basin simulators. Tectonophysics, vol. 263, pp. 307”“317.
Somerton, W.H., 1992. Developments in petroleum science V.37: thermal properties and temperature-related behavior of rock/fluid systems. Elsevier: Amsterdam.
Stransky, J., Vorel, J., Zeman, J., Sejnoha, M., 2011. Mori-Tanaka based estimates of effective thermal conductivity of various engineering materials. Micromachines, vol. 2, n. 2, pp. 129”“149.
Ulamec, S., Biele, J., Funke, O., Engelhardt, M., 2007. Access to glacial and subglacial environments in the Solar System by melting probe technology. Reviews in Environmental Science and Bio/Technology, vol. 6, pp. 71”“94.
Waples, D.W., Waples, J.S., 2004. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Natural Resources Research, vol. 13, n. 2, pp. 97”“122.
Wood, D.M., 1990. Soil Behaviour and critical state soil mechanics. Cambridge University Press: Cambridge.
Yin, Z.Y., Hicher, P.Y., 2008. Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 32, pp. 1515”“1535.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.