COMPARAÇÃO ENTRE O MECDR E O MECID NA SOLUÇÃO DE PROBLEMAS DE AUTOVALOR

Autores

  • Carlos Friedrich Loeffler
  • Abraão Lemos Caldas Frossard
  • Luciano de Oliveira Castro Lara
  • André Bulcão

DOI:

https://doi.org/10.26512/ripe.v2i7.21711

Palavras-chave:

Boundary Element Method. Eigenvalue Problem. Radial Basis Function.

Resumo

This article compares the performance of two formulations of the BEM to solve acoustic problems, governed by the Helmholtz equation: the formulation of Dual Reciprocity and formulation with Direct Integration. The latter is a new alternative to the Dual Reciprocity technique for solving problems modeled by non-adjoint differential operators. Both method are similar, but, the formulation with Direct Integration is simpler and closely resembles an interpolation procedure. Thus, through the solution of eigenvalue problem,natural frequencies are calculated and their accuracy is taken as a parameter to assessing the quality of the results of each formulation. Examples whose analytical solution is known were chosen for analysis of the results.

Downloads

Não há dados estatísticos.

Referências

Braga, C. L. R., 2006. Notas de Física Matemática. Editora Livraria da Física, São Paulo.

Brebbia, C. A., Dominguez, J., 1992. Boundary Elements ”“ An Introductory Course, WIT Press.

Brebbia, C. A., Telles, J. C. F., & Wrobel, L. C., 1984. Boundary Element Techniques. Springer-Verlag, Berlin.

Brebbia, C. A., Walker, S., 1980. Boundary Element Techniques in Engineering, Newnes- Butterworths, London.

Buhmann, M. D., 2003. Radial Basis Function: Theory and Implementations. Cambridge Press.

Butkov, E., 1973. Mathematical Physics. Addison-Wesley, Massachusetts.

Cheng, A. H. D., Young, D. L., & Tsai, C. C., 2000. Solution of Poisson’s equation by iterative DRBEM using compactly supported, positive definite radial basis function. Eng. Analysis with Boundary Elements, 24, 549 - 557.

Dominguez, J., 1993. Boundary Elements in Dynamics, Computational Mechanics Publications, Elsevier Applied Science, London.

Franke, R., 1982. Scattered data interpolation. Mathematics of Computation, 38, pp. 181”“200.

Golberg, M. A., Chen, C. S., 1994. The theory of radial basis functions applied to the BEM for inhomogeneous partial differential equations, BE Communication 5, 57-61.

Loeffler, C. F., Barcelos, H. M., Mansur, W. J., & Bulcão, A., 2015. Solving Helmholtz Problems using Direct Radial Basis Function Interpolation with the Boundary Element Method. Engineering Analysis with Boundary Elements, vol. 61, pp. 218-225.

Loeffler, C. F., Cruz, A. L., & Bulcão, A. 2015. Direct Use of Radial Basis Interpolation Functions for Modelling Source Terms with the Boundary Element Method. Engineering Analysis with Boundary Elements. vol. 50, p.97-108.

Loeffler, C. F., Mansur W. J., 1986. Vibrações Livres de Barras e Membranas Através do Método dos Elementos de Contorno. Revista Brasileira de Engenharia, caderno de Engenharia Civil, vol. 4, n. 2, pp. 5-23.

Loeffler, C. F., Mansur W. J., 1987. Analysis of time integration schemes for boundary element applications to transient wave propagation problems, in: C.A. Brebbia (Ed.), Boundary Element Techniques: Applications in Stress Analysis and Heat Transfer, Computational Mechanics Publishing, UK, pp. 105-124.

Loeffler, C. F., Pereira, P. V. M., & Barcelos, H. M., 2014. Direct Interpolation Technique using Radial Basis Functions Applied to the Helmholtz Problem. In Mallardo, V., & Aliabadi, F. M. H., eds, 15 International Conference on Boundary Element and Meshless Techniques, pp. 223-228.

Loeffler, C. F., Zamprogno, L., Mansur, W. J., & Bulcão, A., 2016. Performance of Compact Radial Basis Functions in the Direct Interpolation Boundary Element Method for Solving Potential Problems. Computational Methods in Engineering Analysis, no prelo.

Partridge, P. W., Brebbia, C. A., & Wrobel, L. C., 1992. The Dual Reciprocity, Boundary Element Method, Computational Mechanics Publications and Elsevier, London.

Pessolani, R. V., 2002. An hp-adaptive hierarchical formulation for the boundary element method applied to elasticity in two dimensions. Journal of the Brazilian Society of Mechanical Sciences, 24(1): 23-45.

Wendland, H., 1995. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. in Comput. Math., 4, 389-396.

Wrobel, L. C., Aliabadi, M. H., 2002. The Boundary Element Method, Wiley, Chichester.

Wu, Z., 1995. Compactly supported positive definite radial functions. Adv. in Comput. Math., 4, 283-292.

Downloads

Publicado

2017-01-25

Como Citar

Loeffler, C. F., Frossard, A. L. C., Lara, L. de O. C., & Bulcão, A. (2017). COMPARAÇÃO ENTRE O MECDR E O MECID NA SOLUÇÃO DE PROBLEMAS DE AUTOVALOR. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(7), 46–62. https://doi.org/10.26512/ripe.v2i7.21711