• Tatiane Nunes da Costa Universidade Federal de Goiás
  • Daniel Ferreira Gonçalves
  • Romes Antonio Borges



Rotating machines. Model reduced. Latin Hypercube method. Uncertainty analysis.


Rotating machines are extensively used in industrial applications considering the flexibility of the equipment, capable of being operated at extreme speeds, the study of  uncertainties are required, due the influence in the dynamic behavior. The use of stochastic techniques have played an important function in engineering problems, the Monte Carlo method (MC) and your variant called Latin Hypercube (LHS) are widely used to model u ncertain parameters. In this context, the present work is devoted to analysis of the uncertainties in the parameters of a flexible rotor discretized by finite element (FE). Aiming a considerable saving of time, models reduced by Iterative Improved Reduction System (IIRS) method were used in the numerical analysis process. The analysis procedure is limited to the frequency domain. Solution envelopes are obtained by LHS method that allow us to describe the system behavior considering some parameters as random.


Não há dados estatísticos.


Berthier, P., Ferraris G., Lallane, M.,1983. Prediction of Critical Speeds, Unbalance and Nonsychronous Forced Response of Rotors. Shock and Vibration, part 4, pp. 103-111.

Cavalini Jr, A. A., 2013. Detection and Identification of Incipient Transversal Cracks in Flexible and Horizontal Shafts of Rotating Machines. PhD Thesis, Federal University of Uberlândia, Uberlândia, MG, Brazil.

Cavalini Jr., A. A., Santos, M.B., Steffen Jr., V., Mahfoud, J., 2012. Industrial Application of a Model Based Rotor Balancing Technique. Vibrations, Shock and Noise.

Craig, Jr., Roy, R., 1981. Structural Dynamics: An introduction to computer Methods. John Wiley & Sons, New York, N. Y.

De Lima, A.M.G., Rade, D.A. and Bouhaddi, N., 2010. Stochastic Modeling of Surface Viscoelastic Treatments Combined with Model Condensation Procedures. Shock and Vibration, Vol. 17, pp. 429-444.

Didier, J., Faverjon, B. & Sinou, J.J., 2012. Analyzing the dynamic response of a rotor system under uncertain parameters by polynomial chaos expansion. Journal of Vibration and Control, 18 (5): 587-607.

Friswell, M.; Garvey, S.; Penny, J., 1995. Model reduction using dynamic and iterated IRS techniques. Journal of sound and vibration, Elsevier, Vol. 186, n. 2, pp. 311”“323.

Ghanem, R.G. and Spanos, P. D., 1991. Stochastic Finite Elements ”“ A Spectral Approach, Spring Verlag.

Guedri, M.; Bouhaddi, N.; Majed, R., 2006. Reduction of the stochastic finite element models using a robust dynamic condensation method. Journal of Sound and Vibration, Elsevier, v. 297, n. 1, pp. 123”“145.

Guyan, R. J. 1965. Reduction of stiffness and mass matrices. AIAA journal, Vol. 3, n. 2, pp. 380”“380.

Koroishi, E. H., Cavalini Jr, A. A., de Lima, A.M.G., and Steffen Jr, V., 2012. Stochastics Modeling of Flexible Rotors, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 34, pp. 597-603.

Koroishi, E. H., 2013. Vibration Control of Rotating Machines using Electromagnetic Actuators. PhD Thesis, Federal University of Uberlândia, Uberlândia, MG, Brazil.

Koutsovasilis, P.; Beitelschmidt, M., 2008. Model reduction comparison for the elastic crankshaft mechanism. Proceedings of the 2nd International Operational Modal Analysis Conference, IOMAC 2008, Vol. 1, pp. 95”“106.

Lalanne, M.; Ferraris, G., 1998. Rotordynamics prediction in engineering. John Wiley & Sons, INC.

Lallement, G., Lecoanet, H., Steffen Jr, V., 1982. Vibration de Rotor sur pallier à Matrice de Raideur non Symétrique. Mechanism and Machine Theory, Vol. 17, n. 1, pp. 47-55.

Lara-Molina, F.A., Koroishi, E.H. and Steffen Jr, V., 2014. Structural Analysis Considering Uncertainties Parametric Fuzzy. Computational Intelligence techniques with applications in Inverse Problems Engineering. Omnipax, Vol. 1, pp. 133-144.

Meggiolaro, M.A., 1996. Bearings Hydrodynamic Modeling in Simulation Rotating System, Masters Dissertation, Pontifícia Universidade Católica do Rio de Janeiro.

Möller, B. and Beer, M., Fuzzy Randomness, Uncertainty in Civil Engineering and Computational Mechanics, Springer-Verlag, 2004.

Simões, R. C., Der Hagopian, J., Mahfoud, J., Steffen Jr, V., 2007. Modal Active Vibration Control of a Rotor Using Piezoelectric Stack Actuators. Journal of Vibration and Control, Vol. 13, pp. 45-64.

Steffen Jr, V., 1981. Analytical Study and Experimental Rotor Dynamics. Journal of Mechanical Sciences, Vol. III, No. 3, pp. 3-8.

Ujihara, D. Y., 2011. Obtaining a Flexible Rotor Model Supported by Active Magnetic Bearings Using Finite Element Method. Masters Dissertation, Federal University of Fluminense, Niterói, RJ.

Vance, J., Zeidan, F., Murphy, B., Machinery Vibration and Rotordynamics. John Wiley & Sonsand Control, Vol. 13, pp. 45-64, 2010.

Xia, Y.; Lin, R., 2004. Improvement on the iterated irs method for structural eigensolutions. Journal of sound and vibration, Elsevier, v. 270, n. 4, p. 713”“727.

Xiu, D., 2010. Numerical Methods for Stochastic Compoutations: A Spectral Method Approach. Princeton University Press.




Como Citar

Costa, T. N. da, Gonçalves, D. F., & Borges, R. A. (2017). NUMERICAL EVALUATION OF THE EFFECT OF UNCERTAINTIES IN ROTATING MACHINERY USING REDUCED MODEL. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(16), 60–76.