• Gilberto Gomes UnB
  • Álvaro M Delgado Neto UnB
  • Luis C Wrobel Brunel University



Dual boundary element. Crack growth. Modelling. Oop.


The stress analysis structures with complex geometry where it is continuously amended by the crack growth, as in aircraft fuselages, usually requires the employment of numerical methods, since the presence of cracks in the structure raises difficulties for the modelling and, therefore, the calculation of the stress intensity factors. Therefore, both the finite element method (FEM) and the boundary element method (BEM) have been applied in this type of analysis, with a slight advantage for the BEM due it does not require continuous remeshing, whenever the crack spreads. Here, the BEM will be used in the treatment of modelling crack considering two independent boundary integral equations, known as dual boundary element method (DBEM): the displacement equation applied for collocation on one of the crack boundary and remaining boundaries, and the traction equation applied for collocation on the opposite crack boundary. Moreover, boundary continuous and discontinuous quadratic elements are used, respectively, along the remaining boundaries of the problem domain and crack boundaries. Aiming to attest the efficiency and robustness of the method, a C++ program for treating cracks two-dimensional models with MATLAB interface for propagation path preview, as well as two applications of open literature, are used. 


Não há dados estatísticos.


De Lacerda L. A. and Wrobel, L. C., 2001, Hypersingular boundary integral equation for axisymmetric elasticity. International Journal for Numerical Methods in Engineering, 52, 1337-1354.

Gallagher, R. H., 1978, A Review of Finite Element Techniques in Fracture Mechanics. Proc. of the First Conference on Numerical Methods in Frac Mech, A.R. Luxmoore and D. R. J. Owen (Editors), University college of Swansea, 1-25.

Swenson, D. V. and Ingraffea, A. R., 1988, Modelling Mixed-Mode Dynamic Crack Propagation Using Finite Elements: Theory and Applications, Comp. Mech. 3, 381-397.

Kocer, C. and Collins, R. E., 1997, The angle of Hertzian cone cracks. Journal of the American Ceramic Society, 81, 1736-1742.

Bush, M. B., 1999, Simulation of contact-induced fracture. Engineering Analysis with Boundary Elements, 23, 59-66.

Ingraffea, A. R., Blandford, G. E., and Ligget, J. A., 1983, Automatic Modelling of Mixed- Mode Fatigue and Quasi-Static Crack Propagation Using the Boundary Element Method, Proc. of Fracture Mechanics: Fourteenth Symposium, ASTM STP 791, J. C. Lewis and G.Sines (Editors), ASTM, I 407-426.

Portela, A., Aliabadi, M. H., and Rooke, D. P., 1993, Dual boundary element incremental analysis of crack propagation, Computer and Structures, Vol. 46, pp. 237-247.

Portela, A., Aliabadi, M. H. and Rooke, D. P., 1992, The Dual Boundary Element Method: Effective Implementation for Crack Problems. International Journal for Numerical Method in Engineering, Vol. 33, pp. 1269-1287.

Aliabadi, M. H., 2002, The Boundary Element Method ”“ Applications in Solids and Structures, Vol. 2, WILEY.

Carvalho, C. V. A., 1998, Simulação Bidimensional Adaptativa por Elementos Finitos de Processos de Fraturamento por Fadiga. Tese de Mestrado, PUC-Rio/Rio de Janeiro.

Gomes, G., 2000, Estrutura de Dados para Representação de Modelos Bidimensionais de Elementos de Contorno. Dissertação de Mestrado, Universidade de Brasília, Brasil.

Gomes, G., 2006, Aplicação dos Métodos de Elementos de Contorno e Reciprocidade Dual em Problemas de Plasticidade 2D Orientada a Objeto. Tese de Doutorado, ENC/FT/UnB,Brasília.

Booch, G., 1994, Object-Oriented Analysis and Design with Applications. The Benjamin/Cumming Publishing Company.




Como Citar

Gomes, G., Neto, Álvaro M. D., & Wrobel, L. C. (2017). MODELAGEM E VISUALIZAÇÃO DE TRINCAS 2D USANDO EQUAÇÃO INTEGRAL DE CONTORNO DUAL. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(6), 120–133.