• Jacqueline Elhage Ramis ITA
  • Paulo Ivo Braga de Queiroz ITA
  • Eliseu Lucena Neto ITA
  • Alex Guimarães de Azevedo ITA
  • Paulo Scarano Hemsi ITA



Convergence. Eigenvalue bound. Finite element. Heat conduction.


Heat conduction and phase change problems are discretized in space by means of finite elements based on Ritz and collocation methods, while the time discretization stems from a fully implicit scheme. These formulations have their performances assessed by comparing the numerical results with the exact solutions of problems in semi-infinite media, either in pure diffusion without phase change - one-phase Stefan problem - or in conduction with phase change - two-phase Stefan problem. Convergence analyses reveal that the Ritz method is better suited to one-phase Stefan problem, while the two-phase Stefan problem is better treated by the collocation method.


Não há dados estatísticos.


Al-Saadi, S. N. & Zhai, Z., 2013, Modeling phase change materials embedded in building enclosure: A review, Renewable and Sustainable Energy Reviews, vol. 21, pp. 659”“673.

Alexiades, V. & Solomon, A., 1993, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing Corporation, Washinhton.

Barbour, J. P. & Hittle, D. C., 2006, Modeling phase change materials with conduction transfer function for passive solar applications, ASME (American society of mechanical engineering)

International Solar Energy Conference, E.U.A., pp. 58”“68.

Comini, G., Del Guidice, S., Lewis, R. W. & Zienkiewicz, . C., 1974, Finite element solution of non-linear heat conduction problems with special reference to phase change, International Journal for Numerical Methods in Engineering, vol. 8, pp. 613”“624.

Crank, J., 1975, Mathematics of Diffusion, 2nd edn, Clarendon Press, Oxford.

Dutil, Y., Lassue, D. R. S., Zalewski, L., Joulin, A., Virgone, J., Kuznik, F., Johannes, K., B´ed´ecarrats, J.-P., Castell, A. & Cabeza, L. F., 2014, Modeling phase change materials behavior in building applications: Comments on material characterization and model validation, Renewable Energy, vol. 61, pp. 132”“135.

Halford, C. K. & Boehm, R. F., 2007, Modeling of phase change material peak load shift, Energy and Buildings, vol. 39, pp. 298”“305.

Ko´sny, J., 2015, PCM-Enhanced Building Components, Springer International Publishing, Cham.

Ramis, J. E., Queiroz, P. I. B., Neto, E. L., Azevedo, A. G. & Hemsi, P. S., 2016, Convergence proof of a temperature-based finite element formulation for transient heat transfer, in S. M.

A´ vila (ed.), XXXVII Iberian Latin-American Congress on Computational Methods in Engineering, Bras´Ä±lia. Paper submited to this congress.

Rolph III, W. D. & Bathe, K.-J., 1982, An efficient algorithm for analysis of nonlinear heat transfer with phase changes, International journal for numerical methods in engineering, vol. 18, pp. 119”“194.

Tabares-Velasco, P. C., Christensen, C. & Bianchi, M., 2012, Verification and validation of EnergyPlus phase change material model for opaque wall assemblies, Building and Environment, vol. 54, pp. 186”“196.




Como Citar

Ramis, J. E., Queiroz, P. I. B. de, Lucena Neto, E., Azevedo, A. G. de, & Hemsi, P. S. (2017). ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(12), 11–23.