BUCKLING OF PLATES SUBJECTED TO ROTATION-DEPENDENT LOADS

Autores

  • Rafael Henrique Viana Abreu PUCRJ
  • Raul Rosas e Silva PUCRJ

DOI:

https://doi.org/10.26512/ripe.v2i22.20882

Palavras-chave:

Stability of plates. Thick plates. Nonconservative tangential follower loads. Rayleigh-Ritz method.

Resumo

This paper studies the buckling of thick plates subjected to loads which depend on the deformation of the structures, more specifically on the rotations about in-plane axes. In the cases studied in the paper the applied forces are not derivable from a potential function (nonconservative loading). The numerical model is a version of the Rayleigh-Ritz method, with appropriate global functions, with addition of nonsymmetrical matrices which statically simulate the load dependence on rotations. Special attention is given to the effect of shear deformation in the flutter load. It is confirmed that the dynamic buckling load is more affected by shear than the static buckling load, due to the modal interaction. A peculiar behavior is also observed in the case of an unusual loading which does not introduce primary in-plane forces in the plate. Examples of rectangular plats with different boundary conditions are presented.

Downloads

Não há dados estatísticos.

Referências

Abreu, R. H. V., 2015. Modelo para instabilidade e vibrações de placas submetidas a carregamentos conservativos e não conservativos. 84 P. Dissertação (Mestrado Em Estruturas) ”“ Departamento De Engenharia Civil, Pontifícia Universidade Católica Do Rio De Janeiro, Rio De Janeiro.

Bazant Z. P. And Cedolin, L., 2010. Stability of structures: elastic, inelastic, fracture and damage theories, Word Scientific Pub. Co., Singapore.

Bolotin, V.V., 1963. Nonconservative problems of the theory of elastic stability. Pergamon press, new york.

Computer And Structures, Inc. Csi Analysis Reference Manual For Sap2000. Berkeley, 2015.

Elishakoff, I., 2005 Controversy associated with the so-called "Follower Forces": Critical overview, Applied Mechanics Reviews, Vol.58, p. 117- 142.

Hermann, G. E Bunbay, R.W., 1964. On the stability of elastic sistems subjected to nonconservative forces. Journal Applied Mech., Vol. 31, P 435-440. G. Herrmann, S. Nemat-Nasser and S. N. Prasad, Models Demonstrating Instability of Nonconservative Mechanical Systems, Northwestern Univ. Struct. Mech. Lab. Tech. Rep. No. 66-4, 1966.

Jarek, A., 2007. Elementos finitos enriquecidos para flambagem e vibração de placas. Rio De Janeiro, 2007, 97 P. Dissertação (Mestrado Em Estruturas) ”“ Departamento De Engenharia Civil, Pontifícia Universidade Católica Do Rio De Janeiro, Rio De Janeiro.

Naudascher. E.; Rockwell. D. Flow-Induced Vibrations: An Engineering Guide. First. ed. Rotterdam, Netherlands: Balkema, 1994.

Reddy, J. N., 2007. Theory and analysis of elastic plates and shells. Second. Ed. United States Of America: Crc Press.

Salas, J. L. S; Rosas E Silva, R., 2015. Computational model for dynamic stability of circular thin and thick annular plates subjected to nonconservative loading. XXXVI Ibero-Latin American Congress On Computational Methods In Engineering, Rio De Janeiro.

Suanno, R. L. M; Rosas E Silva, R., 1989. Influence of mass distribution, shear deformation, and rotary inertia on flutter loads. The American Society Of Mechanical Enginners, V. 42, P. 249-252.

Downloads

Publicado

2017-02-08

Como Citar

Abreu, R. H. V., & Rosas e Silva, R. (2017). BUCKLING OF PLATES SUBJECTED TO ROTATION-DEPENDENT LOADS. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(22), 314–324. https://doi.org/10.26512/ripe.v2i22.20882