DAMAGE IDENTIFICATION THROUGH THE USE OF HIGHORDER STATISTICS
DOI:
https://doi.org/10.26512/ripe.v2i25.20840Palavras-chave:
Damage detection. High-Order Statistics. Clustering methods. Raw.Resumo
Structural Health Monitoring is based on the development of reliable and robust indicators capable to detect, locate, quantify and predict damage. Studies related to damage detection in civil engineering structures have a noticeable interest for researchers in this area. Indeed, the detection of structural changes likely to become critical can avoid the occurrence of major dysfunctions associated with social, economic and environmental consequences. Recently, many researchers have focused on dynamic assessment as part of structural diagnosis. Most of the studied techniques are based on time or frequency domain analyses to extract compressed information from modal characteristics or based on indicators built from these parameters. This work has as its main interest the use of highorder statistics (HOS) coupled with clustering techniques i.e. the k-means algorithm to detect structural modification (damage). The approach is applied directly to dynamic measurements (accelerations) obtained on site. In order to attest the efficiency of the proposed methodology,two investigations are carried out: a numerical model of a simply supported beam and a real case railway bridge, in France. It is shown that HOS coupled with clustering methods is able to distinguish structural conditions with adequate rates.
Downloads
Referências
Alves, V., Cury, A., Roitman, N., Magluta, C., Cremona, C., “Structural modification assessment using supervised learning methods applied to vibration data”, Engineering Structures 99, 439-448.
Cury, A., Cremona, C., Diday E., “Application of Symbolic Data Analysis for structural modification assessment”, Engineering Structures 2010, 32(3), 762-775.
Cury, A., Cremona, C., “Assignment of structural behaviors in long-term monitoring: Application to a strengthened railway bridge”. Structural Health Monitoring 2012, 1, 1-20.
Farrar, C., Worden, K, “Structural Health Monitoring: a machine learning perspective.” Chichester. Wiley. 2013.
Madhulatha, T.S., “An overview on clustering methods”, IOSR Journal of Engineering 2012, 2(4), 719-725.
Santos, J.P., Cremona, C., Orcesi, A.D., Silveira, P., “Multivariate statistical analysis for early damage detection”, Engineering Structures 2013, 56, 273-285.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.