PERIODICITY IN A HARMONICALLY EXCITED DAMPED PENDULUM
DOI:
https://doi.org/10.26512/ripe.v2i19.15017Resumo
We study, in this paper, the nonlinear dynamics of a damped and forced pendulum. This simple model can represent robotic arms, antennas and space solar panels, energy harvesting devices of vibrations present in waves etc.
The response of this system has a wealth of possible behaviors, depending on model parameters, initial conditions and the amplitude and frequency of loading. The answers may result periodic, of several different periods, almost periodic, chaotic etc. This work intends to make a numerical parametric study. The problem is mathematically modeled by an ordinary differential equation obtained by Newton's laws. The evaluation of the response and the characterization of its stability is given by numerical integration of this
mathematical model by Runge-Kutta 4th order algorithm, implemented in MATLAB environment. In this paper, we show an interesting aspect of the dynamic behavior of this model, namely periodic damped free vibration responses depending on certain parameters and initial conditions. Some preliminary periodic forced responses are also shown. Keywords: Nonlinear dynamics, damped and forced pendulum, periodic behavior.
Downloads
Referências
BRASIL, R.M.L.R.F., 1990. Não-linearidade geométrica na dinâmica de estruturas aporticadas planas:um tratamento pelo método dos elementos finitos. Tese de Doutorado, PEF/EPUSP, São Paulo.
CLOUGH, R. W., PENZIEN, J., 1993. Dynamics of structures. 2nd ed.NewYork: McGraw-Hill, Inc.; p. 332.
FETTER, A.L.; WALECKA, J.D., 2006. Nonlinear Mechanics. Dover.
GUCKENHEIMER, J.; HOLMES, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.
JACKSON, E. A., 1991. Perspectives of Nonlinear Dynamics. Cambridge. 2 vols.
LAKSHMANAN, M.; RAJASEKAR, S., 2003. Nonlinear Dynamics : Integrability, Chaos, and Patterns. Springer.
MAZZILLI, C.E.N.; BRASIL, R.M.L.R.F., 1995. Effect of static loading on the nonlinear vibrations of a three-time redundant portal frame: analytical and numerical studies, Nonlinear Dynamics, pp. 347-366.
MEIROVITCH, L., 1970. Methods of analytical dynamics. New York, McGraw-Hill, p. 524.
OTT, E., 2002. Chaos in dynamical System. Cambridge University Press.
RASBAND, S. N., 1990. Chaotic Dynamics of Nonlinear Systems. Wiley.
SAVI. M.A.,2006. Dinâmica não-linear e caos. E-papers, Rio de Janeiro.
STROGATZ, S. H., 1994 Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity). Addison-Wesley.
TABOS, M., 1989. Chaos and Integrability in Nonlinear Dynamics: An Introduction. Wiley Interscience Publication. p. 364.
THOMPSON, J. M. T., HUNT, G. S., 1973 A general theory of elastic stability. New York: Wiley.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.