Cassini-Huygens: A Sonda Espacial que Mudou a Compreensão Sobre Saturno e Suas Luas Geladas Titã e Encélado
Palavras-chave:
Sonda Espacial Cassini-Huygen., Saturno. Titã. Encélado.Resumo
Neste ano, a missão Cassini-Huygens completa cinco anos desde seu desfecho quando foi lançada propositalmente para colidir contra a espessa atmosfera do nosso grandioso “Senhor dos Anéis”. Durante quase vinte anos, esta missão obteve surpreendentes resultados sobre o complexo sistema saturnino revelando mistérios e fenômenos obscurecidos pela enorme distância que separa este planeta da Terra. Nesse contexto, serão apresentados os principais feitos da missão Cassini enviada para investigar Saturno, seus anéis e suas luas dando ênfase aos resultados obtidos sobre as luas Titã e Encélado a partir de uma extensa revisão bibliográfica. Os equipamentos e experimentos que viajaram a bordo da espaçonave Cassini e da sonda europeia Huygens coletaram diversos dados e revelaram correntes de jato na atmosfera de Saturno, longas tempestades que varrem o planeta de leste a oeste e auroras boreais em sua alta atmosfera. Além disso, a missão contribuiu para melhor entendimento sobre as interações que ocorrem entre Saturno, seus anéis e suas luas. Por fim, a espaçonave Cassini revelou que a lua gelada Encélado apresenta atividade geológica como criovulcanismo e Titã possui lagos, rios e oceanos de hidrocarbonetos que sofrem transformações semelhantes àquelas que a água sofre aqui na Terra.
Downloads
Referências
ACHILLEOS, N., et al. (2008). Large-Scale Dynamics of Saturn’s Magnetopause: Observations by Cassini, Journal of Geophysical Research 113, A11209.
AGUIAR, A. C. B., et al. (2010). A laboratory model of Saturn’s North Polar Hexagon, Icarus, 206: 755-763.
BAINES, K. H., et al. (2009a). Saturn’s north polar cyclone and hexagon at depth revealed by Cassini/VIMS. Planet. Space Sci., in press.
BAINES, K. H., et al. (2009b). The deep clouds of Saturn: Morphology, spatial distribution, and dynamical implications as revealed by Cassini/VIMS. Icarus.
BROWN, D., e Agle D. C. (2009). Salt Finding from NASA’s Cassini Hints at Ocean within Saturn Moon, NASA news.
BROWN, R. H., et al. (2004). The Cassini Visual and Infrared Mapping Spectrometer (VIMS) Investigation. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations, Springer.
CARROL, B. W., e Ostlie D. A. (2017). An Introduction to Modern Astrophysics, Cambridge University Press.
COLWELL, J. E., et al. (2009). The Structure of Saturn’s Rings. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens, Springer.
COUSTENIS, A., et al. (2009). Earth-Based Perspective and Pre-Cassini–Huygens Knowledge of Titan. In: Titan from Cassini Huygens, Springer.
DEL GENIO, A. D., et al. (2009). Saturn Atmospheric Structure and Dynamics. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens, Springer.
DESCH, M. D. (1982). Evidence for Solar Wind Control of Saturn Radio Emission, J. Geo. Res. 87, 4549–4554.
DOUGHERTY, M. K., et al. (2002). The Cassini Magnetic Field Investigation. In C. T. Russel. The Cassini-Huygens Mission: Orbiter In-Situ Investigations, Springer.
DOUGHERTY, M. K., Seidelmann B. J., e Spencer J. R. (2018). Enceladus as an Active World: History and Discovery. In P. M. Schenk et al., eds. Enceladus and the Icy Moons of Saturn. (pp. 3-16). Univ. of Arizona, Tucson.
DYUDINA, U.A., et al. (2007). Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus 190, 545–555.
ELACHI, C., et al. (1999). Radar: The Cassini Titan Radar Mapper. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations, Springer.
ESPOSITO, L. W., et al. (2000). The Cassini Ultraviolet Imaging Spectrograph Investigation. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations, Springer.
ESPOSITO, L. W., et al. (2004). The Cassini Ultraviolet Imaging Spectrograph Investigation. Space Sci. Rev. 115, 299–361.
FARRELL, W. (2008). Enceladus is Supplying Ice to Saturn’s A-Ring, Universe Today.
FLASAR, F. M., et al. (2004). Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations, Springer.
FLETCHER, L. N., et al. (2008). Temperature and composition of Saturn’s polar hot spots and hexagon. Science 319, 79–81.
GURNETT, D. A. et al. (2004). The Cassini Radio and Plasma Wave Science Investigation. Space Sci. Rev. 114, 395–463.
GURNETT, D. A. (2005). Radio and Plasma Wave Observations at Saturn from Cassini’s Approach and First Orbit, Science 307, 1255–1259.
HAMILTON, D. P. (2006). The collisional cascade model for Saturn’s ring spokes. Bull. Am. Astron. Soc. 38, 578.
HANSEN, C. J., et al. (2006). Enceladus’ water vapor plume. Science, 311, 1423-1425.
HARTLE, R. E. (1985). Interaction of Titan’s Atmosphere with Saturn’s Magnetosphere, Advances in Space Research, 5, 321–332.
HEMINGWAY, D., et al. (2018). The Interior of Enceladus. In P. M. Schenk et al., eds. Enceladus and the Icy Moons of Saturn. (pp. 129-162). Univ. of Arizona, Tucson.
HORÁNYI, M. et al. (2009). Diffuse Rings. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens. Springer.
HUBBARD, W. B., et al. (2009). The Interior of Saturn. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens. Springer.
HULTQVIST, B. (2007). The Aurora. In: Y. Kamide/A. Chian, Handbook of the Solar-Terrestrial Investigations of Jupiter and Saturn Environment. J. Astron. 67 (587) 333-354.
JAUMANN, R., et al. (2009.) Geology and Surface Processes on Titan. In: Titan from Cassini Huygens, Springer.
JOHNSON, T. V. e Estrada P. R. (2009). Origin of the Saturn System. In M. K. Dougherty, L. W. Esposito, S. M. Krimigis, eds. Saturn from Cassini-Huygens. Springer.
KAISER, M. L., et al. (1980). Voyager Detection of Nonthermal Radio Emission from Saturn, Science 209, 1238.
KEPLER, S. O., e SARAIVA M. F. O. (2017). Astronomia e Astrofísica, 4ªed., São Paulo: Editora Livraria da Física.
KIVELSON, M. G. et al. (2006). Does Enceladus Govern Magnetospheric Dynamics at Saturn? Science 311, 1391–1392.
LEDVINA, S. A. (2004). Titan’s Induced Magnetosphere, Advances in Space Research 33, 2092–2102.
LI, C. e INGERSOLL, A. P. (2015), Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms, Nature Geoscience, 8: 398-403.
LOPES, R. M. C., et al. (2020). A Global Geomorphologic Map of Saturn’s Moon Titan, Nat. Astron., 4: 228–233.
LORENZ, R., e Mitton, J. (2008). Titan Unveiled: Saturn’s Mysterious Moon Explored. Princeton University Press.
MELTZER, M. (2015). The Cassini-Huygens Visit to Saturn: An Historic Mission to the Ringed Planet, Springer.
PORCO, C. C., et al. (2004). Cassini Imaging Science: Instrument Characteristics and Anticipated Scientific Investigations at Saturn. In C. T. Russel. The Cassini-Huygens Mission: Orbiter Remote Sensing Investigations. Springer.
PORCO, C., et al. (2014). How the Geysers, Tidal Stresses, and Thermal Emission Across the South Polar Terrain of Enceladus are Related, The Astronomical Journal, 148, 45.
POSTBERG, F., et al. (2018). Plume and Surface Composition of Enceladus. In P. M. Schenk et al., eds. Enceladus and the Icy Moons of Saturn. (pp. 129-162). Univ. of Arizona, Tucson.
SCHENK, P. M., et al. (2018). Enceladus and the Icy Moons of Saturn, Arizona LPI.
SPAHN, F., et al. (2006). Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring, Science 311, 1416 – 1418.
SPENCER, J. R., et al. (2006). Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot, Science 311, 1401 – 1405.
SPILKER, L. J. (1997). Passage to a Ringed World, NASA SP-533, Washington D.C.: NASA.
SRAMA, R., et al. (2002). The Cassini Cosmic Dust Analyzer. In C. T. Russel. The Cassini-Huygens Mission: Orbiter In-Situ Investigations. Springer.
STALLARD, T., Lystrup, M., Miller, S. (2008). Emission-line imaging of Saturn’s H3+ aurora. Astrophys. J. 675, L117.
STONE, E. C., et al. (1981). Voyager 1 Encounter with the Saturnian System, Science 212, 159–163.
TAGGER, M., Henricksen, R. N., Pellat, R. (1991). On the nature of the spokes in Saturn’s rings. Icarus 91, 297–314.
TOMASKO, M. G., et al. (1999). The Descent Imager/Spectral Radiometer (DISR) Experiment on the Huygens Entry Probe of Titan. In C. T. Russel. The Cassini-Huygens Mission: Overview, Objectives and Huygens Instrumentarium. Springer.
VAN ALLEN, J. A., et al. (1980). The Energetic Charged Particle Absorption Signature of Mimas, J. Geophys. Res. 85(A11), 5709–5718.
VERBISCER, A. J., et al. (2007). Enceladus: Cosmic Ion and Neutral Mass Spectrometer: Enceladus: Cosmic graffiti artistic caught in the act. Science, 315, 815-817.
VERBISCER A. J., et al. (2009). Saturn’s Largest Ring, Nature 461, 1098–1100.
WAITE, J. H., et al. (2004). The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. In C. T. Russel. The Cassini-Huygens Mission: Orbiter In-Situ Investigations. Springer.
YAROSHENKO, V., Horányi, M., Morfill, G. (2008). The wave mechanism of spoke formation in Saturn’s rings. In: Multifacets of Dusty Plasmas, Fifth Int’l. Conf. Physics of Dusty Plasmas. AIP Conf. Proc. 1041, 215–216.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2022 Physicae Organum - Revista dos Estudantes de Física da UnB
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).