Emissão anômala de micro-ondas na Via Láctea

Auteurs-es

  • José Ricardo P. Melo Instituto de Física – Universidade de Brasília (UnB)
  • Thyrso Villela Divisão de Astrofísica – Instituto Nacional de Pesquisas Espaciais (INPE) Instituto de Física – Universidade de Brasília (UnB)

Mots-clés :

Emissão anômala de micro-ondas. Emissão de micro-ondas na Galáxia. Hidrocarbonetos policíclicos aromáticos. Poeira em rotação.

Résumé

É apresentada uma revisão sucinta do fenômeno conhecido como Emissão Anômala de Micro-ondas na Via Láctea (AME, da sigla em inglês para Anomalous Microwave Emission), que representa um desafio interessante para a astrofísica moderna. Desde a identificação dessa emissão, em 1996, ainda não foi dada uma explicação definitiva sobre os mecanismos físicos responsáveis por tal emissão, apesar dos vários estudos dedicados ao tema.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

ABDALLA, E. et al. (2022). The BINGO Project I: Baryon Acoustic Oscillations from Integrated Neutral Gas Observations. Astronomy & Astrophysics, 664, A14. arXiv:2107.01633.

ALI-HAÏMOUD, Y., HIRATA, C. M., DICKINSON, C. (2009), A refined model for spinning dust radiation. Monthly Notices of the Royal Astronomical Society, 395(2): 1055–1078.

ALI-HAÏMOUD, Y. (2014), Rotational spectroscopy of interstellar PAHs. Monthly Notices of the Royal Astronomical Society, 437: 2728–2743.

ANDREWS, H., et al. (2015), PAH Emission at the Bright Locations of PDRs: the grandPAH Hypothesis. The Astrophysical Journal, 807:9.

ASTROPARSEC: O porquê dos observatórios espaciais, 2021. Disponível em: < https://astroparsec.com/2021/05/19/o-porque-dos-observatorios-espaciais >. Acesso em: 12 de maio de 2022.

BELL, A. C. et al. (2019), Investigation of the Origin of the Anomalous Microwave Emission in Lambda Orionis, Astronomical Society of Japan Volume 71, Issue 6, December 2019, 123.

BENNETT, C.L. et al. (1992), Preliminary separation of Galactic and cosmic microwave emission for the COBE differential microwave radiometer. The Astrophysical Journal Letters. v. 396, n. 1, Part. 2, L7-L12.

BENNETT, C.L. et al. (2003), First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission, Astrophysical Journal Supplement Series, 148, 97.

Bremsstrahlung.svg, Wikimedia Commons, 2007. Disponível em: < https://pt.wikipedia.org/wiki/Ficheiro:Bremsstrahlung.svg >. Acesso em: 12 de maio de 2022.

COMINS, N. F.; KAUFMANN, W. J. (2010). Descobrindo o Universo. 8ª edição. Porto Alegre: Bookman.

DE OLIVEIRA-COSTA, A. et al. (1997), Galactic Microwave Emission at Degree Angular Scales, The Astrophysical Journal, 482, L17.

DICKINSON, C. et al. (2013), Anomalous Microwave Emission: Theory, Modeling, and Observations, Advances in Astronomy, Volume 2013, Article ID 134979.

DICKINSON, C. (2018). Large-Scale Features of the Radio Sky and a Model for Loop I, Galaxies 6, no. 2: 56.

DICKINSON, C. et al. (2018), The State-of-Play of Anomalous Microwave Emission (AME) Research, New Astronomy Reviews, Volume 80, February 2018, Pages 1-28.

DRAINE, B. T.; LAZARIAN, A. (1998), Electric Dipole Radiation from Spinning Dust Grains, The Astrophysical Journal, 508, 157.

DRAINE, B. T.; LAZARIAN, A. (1999), Magnetic Dipole Microwave Emission from Dust Grains, The Astrophysical Journal, 512, 2.

DURRER, R. (2015). The cosmic microwave background: the history of its experimental investigation and its significance for cosmology, Classical and Quantum Gravity, 32(12), 124007.

ERICKSON, W.C. (1957), A Mechanism of Non-Thermal Radio-Noise Origin, The Astrophysical Journal, 126:480.

GREAVES, J. S. et al. (2018), Anomalous Microwave emission from spinning nanodiamonds around stars, Nature Astronomy 2, pp. 662-667.

HENSLEY, B. S.; DRAINE, B. T.; MEISNER, A. M. (2016), A Case Against Spinning PAHs as the Source of the Anomalous Microwave Emission, The Astrophysical Journal, 827:45.

HUESO, R., GUILLOT, T. (2003), Evolution of the protosolar nebula and formation of the giant planets, Space Science Reviews, 106(1), 105-120.

JONES, M. E. et al. (2018), The C-Band All-Sky Survey (C-BASS): Design and capabilities, Monthly Notices of the Royal Astronomical Society, 480, 3.

KARSSEMEIJER, L. J.; PEDERSEN, A.; JÓNSSON, H.; CUPPEN, H. M. (2012), Long-timescale simulations of diffusion in molecular solids, Physical Chemistry Chemical Physics, 2012,14, 10844-10852.

KOGUT, A. et al. (1996), High-latitude galactic emission in the COBE differential microwave radiometer 2 year sky maps, The Astrophysical Journal, 460, 1.

LEITCH, E.M.; READHEAD, A.C.S.; PEARSON T.J.; MYERS, S.T. (1997), An Anomalous Component of Galactic Emission, The Astrophysical Journal, 486, 1.

MELO, J. R. P. (2022), Emissão anômala de micro-ondas na Via Láctea, Trabalho de Conclusão de Curso, curso de pós-graduação lato sensu Astrofísica Gravitacional e Física Espacial, Instituto de Física, Universidade de Brasília.

NASA/Goddard Space Flight Center: The Multiwavelength Milky Way, 2018. Disponível em: < https://asd.gsfc.nasa.gov/archive/mwmw/mmw_sci.html >. Acesso em: 12 de maio de 2022.

PLANCK COLLABORATION (2006). The scientific programme of Planck, arXiv:astro-ph/0604069v1.

PLANCK COLLABORATION (2011). Planck early results. XX. New light on anomalous microwave emission from spinning dust grains, Astronomy & Astrophysics, 536, A20.

PLANCK COLLABORATION (2014), Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds, Astronomy & Astrophysics, 565, A103.

RADIO ASTRONOMY AND SUPER-SYNTHESIS: A Survey (2010). Disponível em: < https://www.researchgate.net/figure/a-Force-on-a-moving-charge-in-a-magnetic-field-b-An-electron-at-relativistic-speed_fig4_228678515 >. Acesso em: 18 de maio de 2022.

RADIO ASTRONOMY AND SUPER-SYNTHESIS: A Survey (2010). Disponível em: < https://www.researchgate.net/figure/Flux-density-measured-on-Earth-as-a-result-of-radio-emission-from-different-astronomical_fig2_228678515 >. Acesso em: 18 de maio de 2022.

RENNIE, T. J. et al. (2022), COMAP Early Science: VI. A First Look at the COMAP Galactic Plane Survey, arXiv:2111.05932.

SHANNON, M. J.; STOCK, D. J.; PEETERS, E. (2015), Probing the ionization states of polycyclic aromatic hydrocarbons via the 15–20 micrometros emission bands, The Astrophysical Journal, 811, 2.

TIBBS, C. T. et al. (2011), Spitzer characterization of dust in an anomalous emission region: the Perseus cloud, Monthly Notices of the Royal Astronomical Society, 418:1889–1900.

TIELENS, A. G. G. M. (2013), The molecular Universe. Reviews of Modern Physics, 85:1021–1081.

TYPES OF ASTRONOMICAL SPECTRA. Australia Telescope National Facility. Disponível em:<https://www.atnf.csiro.au/outreach//education/senior/astrophysics/spectra_astro_types.html#spectypestar >. Acesso em: 18 de maio de 2022.

VILLELA, T. (2016). A Brief History of the Brazilian Participation in CMB Measurements, The Cosmic Microwave Background, pp 299-319, Astrophysics and Space Science Proceedings book series (ASSP, volume 45), 2016. DOI: 10.1007/978-3-319-44769-8_9.

WEAVER, J. R. et al. (2022), COSMOS2020: A Panchromatic View of the Universe to z~10 from Two Complementary Catalogs, The Astrophysical Journal Supplement Series, 258, 1, id 11.

WUENSCHE, C. A. et al. (2022), The BINGO Project II: Instrument Description, Astronomy & Astrophysics, 664, A15. arXiv:2107.01634.

YSARD N.; VERSTRAETE, L. (2010), The long-wavelength emission of interstellar PAHs - characterizing the spinning dust contribution, Astronomy & Astrophysics, 509, A12.

Téléchargements

Publié-e

2023-01-09

Comment citer

P. Melo, J. R., & Villela, T. (2023). Emissão anômala de micro-ondas na Via Láctea. Physicae Organum - Revista Dos Estudantes De Física Da UnB, 8(2), 118–137. Consulté à l’adresse https://periodicos.unb.br/index.php/physicae/article/view/45724