Analytical study of electronic behavior in one-dimensional crystal lattice under DC-AC electric fields

Authors

  • Hudson Rodrigues Armando Universidade de Brasília
  • Carlos Derli Almeida Cornélio Universidade de Brasília

Keywords:

Bloch oscillations. Wannier amplitude. Tight-binding method. Wave function.

Abstract

The main objective of this article is to analytically describe the characteristics of electronic
behavior by varying the initial conditions of the Wannier amplitude. The study included two
initial conditions: a Delta Dirac function and a Gaussian function as the Wannier amplitude.
The results showed that the mean square deviation of the Wannier amplitude with the Delta Dirac function is a periodic function dependent on time, while for the Gaussian function, the analysis was performed through images generated by software. The results obtained confirm previously generated data by purely numerical methods. Finally, we present a brief analysis of the results obtained by varying some parameters of the amplitude function.

Downloads

Download data is not yet available.

Author Biography

Carlos Derli Almeida Cornélio, Universidade de Brasília

Master's degree in Physics from the University of Brasília (2012). He is currently coordinator of the mathematics course at the State University of Goiás and professor at the State University of Goiás. University of Brasilia

References

ASHCROFT, N. W.; MERMIN, N. D. Solid state physics. [S.l.]: Cengage Learning, 2022. 10

BOYCE, W. E.; DIPRIMA, R. C.; MEADE, D. B. Elementary differential equations and boundary

value problems. [S.l.]: John Wiley & Sons, 2021. 35

COHEN-TANNOUDJI, C. N. Nobel lecture: Manipulating atoms with photons. Reviews of

Modern Physics, APS, v. 70, n. 3, p. 707, 1998. 14

COSTA, R. M.; MENDOZA, M. Dedução da matriz do hamiltoniano tight binding usando a

discretização da equação de schrödinger. Revista Brasileira de Ensino de Física, SciELO Brasil,

v. 42, 2020. 25

CUMMINGS, J. Real analysis: a long-form mathematics textbook. [S.l.]: CreateSpace Independent

Publishing Platform, 2019. 31

DUNLAP, D.; KENKRE, V. Dynamic localization of a charged particle moving under the

influence of an electric field. Physical Review B, APS, v. 34, n. 6, p. 3625, 1986. 32

GRIFFITHS, D. Eletrodinâmica, 3ª Edição. [S.l.]: Editora Pearson Education, 2011. 19

GRIFFITHS, D.; QUÂNTICA, M. 2ª Edição. [S.l.]: Editora Pearson Education, 2011. 9, 20, 32

HOLSTEIN, T. Studies of polaron motion: Part ii. the “small” polaron. Annals of physics,

Elsevier, v. 8, n. 3, p. 343–389, 1959. 23

IEZZI, G. Fundamentos de matemática elementar, 3: trigonometria. [S.l.]: Atual, 2013. 26

KITTEL, C.; HOLBROW, C. Elementary solid state physics: a short course. American Journal

of Physics, v. 31, n. 8, p. 630–630, 1963. 10, 11, 12, 15

KOHN, W. Analytic properties of bloch waves and wannier functions. Physical Review, APS,

v. 115, n. 4, p. 809, 1959. 18

KREH, M. Bessel functions. Lecture Notes, Penn State-Göttingen Summer School on Number

Theory, NEC Labs, v. 82, p. 161–162, 2012. 31, 32

LANDAU, L. et al. Teoria do campo. [S.l.: s.n.], 1980. 23

MARZARI, N. et al. Maximally localized wannier functions: Theory and applications.

Reviews of Modern Physics, APS, v. 84, n. 4, p. 1419, 2012. 17

MERMIN, N. D.; ASHCROFT, N. W. Hans bethe’s contributions to solid-state physics.

International Journal of Modern Physics B, World Scientific, v. 20, n. 16, p. 2227–2236, 2006. 8

NACBAR, D. R. Funções de wannier generalizadas para aplicações em ciência dos materiais.

Universidade Estadual Paulista (Unesp), 2012. 19

NAZARENO, H.; GALLARDO, J. Bloch oscillations of an electron in a crystal under the

action of an electric field. physica status solidi (b), Wiley Online Library, v. 153, n. 1, p.

–184, 1989. 22

NETO, J. B. Mecânica Newtoniana, Lgrangiana e Hamiltoniana. [S.l.]: Editora Livraria da Física,

28

PEIERLS, R.; PEIERLS, R. E. Quantum theory of solids. [S.l.]: Oxford University Press, 1955. 29

RIBEIRO, A. V. Cálculos de estrutura eletrônica de materiais mediante combinação linear de

orbitais atômicos. Universidade Estadual Paulista (Unesp), 2010. 16

ROCHA, G. F. Impacto da interação elétron-fônon na dinâmica eletrônica em redes

cristalinas unidimensionais. 2017. 35, 37

SAKURAI, J. J.; COMMINS, E. D. Modern quantum mechanics, revised edition. [S.l.]: American

Association of Physics Teachers, 1995. 14, 28, 29, 30

SUZUKI, M.; SUZUKI, I. S. Lecture note on solid state physics: mean-field theory. System,

v. 6000, p. 1–15, 2006. 9

TABACNIKS, M. H. Os elementos na matéria. Tese (Doutorado) — Universidade de São Paulo,

8

TONIDANDEL, D.; ARAÚJO, A. Conectando transformadas: Fourier e laplace. In: SN.

Congresso Brasileiro de Automática, Campina Grande, PB. [S.l.], 2012. v. 1, p. 32–36. 24

WANNIER, G. H. The structure of electronic excitation levels in insulating crystals. Physical

Review, APS, v. 52, n. 3, p. 191, 1937. 17, 18

WANNIER, G. H. Dynamics of band electrons in electric and magnetic fields. Reviews of

Modern Physics, APS, v. 34, n. 4, p. 645, 1962. 18

Published

2024-09-02

How to Cite

Rodrigues Armando, H., & Almeida Cornélio, C. D. (2024). Analytical study of electronic behavior in one-dimensional crystal lattice under DC-AC electric fields. Physicae Organum, 9(1), 1–26. Retrieved from https://periodicos.unb.br/index.php/physicae/article/view/47757