MISTURA ESPECTRAL: (II) CLASSIFICADORES ESPECTRAIS PARA IDENTIFICAÇÃO

Autores

  • Osmar Abílio de Carvalho Júnior INPE - Instituto Nacional de Pesquisas Espaciais 12201-970 - São José dos Campos - SP, Brasil.
  • Ana Paula Ferreira de Carvalho UnB - Universidade de Brasília - Departamento de Ecologia Campus Universitário Darcy Ribeiro, Asa Norte - 70910-900, Brasília, DF, Brasil
  • Renato Fontes Guimarães UnB - Universidade de Brasília - Departamento de Geografia Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brasil.
  • Paulo Roberto Meneses UnB - Universidade de Brasília - Departamento de Geologia Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brasil.
  • Yosio Edemir Shimabukuro INPE - Instituto Nacional de Pesquisas Espaciais 12201-970 - São José dos Campos - SP, Brasil.

DOI:

https://doi.org/10.26512/2236-56562003e39723

Palavras-chave:

mistura espectral, classificação espectral, sensoriamento remoto

Resumo

O presente trabalho possui como objetivo apresentar uma revisão sobre os métodos desenvolvidos para classificação espectral. Os classificadores espectrais que visam à identificação realizam uma comparação do espectro da imagem (EI) com um espectro de referência (ER), proveniente de bibliotecas espectrais ou de membros finais das imagens. As principais diferenças entre os métodos são basicamente duas: (a) opção do emprego da remoção do contínuo e (b) o critério de similaridade a partir do ajuste linear. A remoção do contínuo tem como propósito enfatizar as feições de absorção a partir da retirada do background utilizando uma função matemática, geralmente, o spline cúbico. Os critérios de similaridade são oriundos da regressão linear e do ajuste por mínimos quadrados sendo assim utilizadas formulações do coeficiente de correlação e do erro padrão. Serão descritos os algoritmos dos principais métodos existentes: Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), Spectral Correlation Mapper (SCM) e o coeficiente de determinação utilizado pelo Tricorder e Tetracorder

Downloads

Não há dados estatísticos.

Referências

BAKKER, W. H., SCHMIDT, K. S. (2002). Hyperspectral edge filtering for measuring homogeneity of surface cover types. ISPRS Journal of Photogrammetry & Remote Sensing, 56:246– 256.

BAUGH, W. M., KRUSE, F. A., ATKINSON JR., W. W. (1998). Quantitative geochemical mapping of ammonium minerals in the southern cedar mountains, Nevada, using the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65:292-308. BOGLIOLO, M. P., TEGGI, S.,

BUONGIORNO, M.F, PUGNAGHI, S. (1998), Retrieving Ground Reflectance from MIVIS Data: A Case Study on Volcano Island (Italy), In: EARSeL Workshop on Imaging Spectroscopy, 1, University of Zurich, Switzerland. Proceedings, p. 403-416.

CARVALHO JÚNIOR, O. A., MENEZES, P. R. (2000). Spectral Correlation Mapper (SCM): an Improving Spectral Angle Mapper. In: Airborne Earth Science Workshop, 7, Pasadena, CA. Summaries, JPL Pub. 00-18. pp. 65-74.

CLARK, R. N. (1980). A large scale interactive one dimensional array processing system. Publ. Astron. Soc. Pac., 92, 221-224.

CLARK, R. N. (1981). The spectral reflectance of water-mineral mixtures at low temperatures, J. Geophys. Res., 86, 3074-3086.

CLARK, R. N. (1983). Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water. J. Geophys. Res., 88:10635-10644.

CLARK, R. N., LUCEY, P. G. (1984). Spectral properties of ice-particulate mixture and Implications for Remote Sensing 1. Intimes Mixtures. J. Geophys. Res., 89:6341-6348

CLARK, R. N., ROUSH, T. L., (1984), Reflectance Spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res., 89, 6329-6340.

CLARK, R. N., GALLAGHER, A. J., SWAYZE, G. A. (1990). Material absorption band depth mapping of imaging spectrometer data using a complete band shape leastsquares fit with library reference spectra. In: Annual JPL Airborne Geoscience Workshop, 2, Pasadena, CA. Summaries, JPL-Publ. 90-54, p.176-186.

CLARK, R. N., SWAYZE, G. A., GALLAGHER, A., GORELICK, N., KRUSE, F. (1991). Mapping with imaging spectrometer data using complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials. In: Annual JPL Airborne Geoscience Workshop, 3, Pasadena, CA. Summaries, JPL Pub-91-28, p.2-3

CLARK, R. N.; SWAYZE, G. A., GALLAGHER, A. (1992a). Mapping the mineralogy and lithology of Canyonlands, Utah with imaging spectrometer data and multiple spectral feature mapping algorithm. In: Annual JPL Airborne Geoscience Workshop, 4, Pasadena, CA. Summaries, JPL Publ. 92-14, p. 11-13.

CLARK, R. N.; SWAYZE, G. A.; KOCH, C., AGER, C. (1992b). mapping vegetation types with the multiple spectral feature mapping algorithm in both emission and absorption. In: Annual JPL Airborne Geoscience Workshop, 4, Pasadena, CA. Summaries, JPL Pub-92-14, p. 60-62.

CLARK, R. N., SWAYZE, G. A. (1995). Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: the USGS Tricorder algorithm. In: JPL Airborne Earth Science Workshop, 5, Pasadena, CA. Summaries, JPL Publ. 95-1, p. 39-40.

CLARK, R. N., SWAYZE, G. A., ROWAN, L., LIVO, E., WATSON, K. (1996), Mapping Superficial Geology, Vegetation Communities, and Environmental Materials in Our National Parks: USGS Imaging Spectroscopy, Integrated Geology, Ecosystems, and Environmental Mapping Project. In: JPL Airborne Earth Science Workshop, 6, Pasadena, CA. Summaries, JPL Publ. 96-1, p.39-40.

CLARK, R. N.; VANCE, S. LIVO, L. K., GREEN, R. O. (1998). Mineral mapping with imaging spectroscopy: the Ray Mine, AZ. JPL Airborne Earth Science Workshop, 7, Pasadena, CA. Summaries, JPL Publ. 97-21, p. 67-77.

CLARK, R. N., SWAYZE, G. A., LIVO, K. E., KOKALY, R. F., SUTLEY, S. J., DALTON, J. B., MCDOUGAL, R., GENT, C. A. (2003). Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems, Journal of Geophysical Research, In Press, 2003.

CONEL, J. E., HOOVER, G., NOLIN, A., ALLEY, R., MARGOLIS, J. (1992). Empirical Relationships Among Semi-Arid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithm. In: Annual JPL Airborne Geoscience Workshop, 4, Pasadena, CA. Summaries. JPL Publ. 92-14, p. 150-151.

CROWLEY, J. K., CLARK, R. N. (1992). AVIRIS, Study of Death Valley evaporite deposits using least-squares band-fitting methods. In: Annual JPL Airborne Geoscience Workshop, 4, Pasadena, CA. Summaries, JPL Publ. 92-14, p. 29-31.

DALTON, B., KING, T., BOVIE, D., KOKALY, R. F., CLARK, R. N., SWAYZE, G. A., VANCE, S. (1998). Mapping of acid-generating and acid-buffering minerals in the animas watershed by imaging spectroscopy. In: JPL Airborne Earth Science Workshop, 7, Pasadena, CA. Summaries, JPL Publ. 97-21, p.79-79.

DUCAN, W. S., LEDGER, E. B., WHITEHEAD, V. S. (1998). X-ray diffraction verification of AVIRIS clay mineral identification, Summitville area, South Western Colorado. In: JPL Airborne Earth Science Workshop, 7, Pasadena, CA. Summaries, JPL Publ. 97- 21, p.85-95.

KING, T. V. V., CLARK, R. N., AGER, C., SWAYZE, G. A. (1995). Remote mineral mapping using AVIRIS data at Summitville, Colorado, and the adjacent San Juan Mountains. In: JPL Airborne Earth Science Workshop, 5, Pasadena, CA. Summaries, JPL Publ. 95-1, p.113-116.

KOKALY, R. F., CLARK, R. N., LIVO, K. E. (1998). Mapping the Biology and Mineralogy of Yellowstone National Park Using Imaging Spectroscopy. In: JPL Airborne Earth Science Workshop, 7, Pasadena, CA. Summaries, JPL Publ. 97-21, p.245-254.

KRUSE, F. A., LEFKOFF, A. B., BOARDMAN, J. W., HEIEDBRECHT, K. B., SHAPIRO, A. T., BARLOON, P. J., GOETZ, A. F. H. (1993). The Spectral Image Processing System (SIPS) – Interactive Visualization and Analysis of Imaging Spectrometer Data, Remote Sens. Environ. 44:145-163.

LIVO, K. E., CLARK, R. N., KRUSE, F. A., KOKALY, R. F. (1999). Characterization of hydrotermally altered rock and hot spring deposits at Yellowstone National park using AVIRIS data. In: JPL Airborne Earth Science Workshop, 8, Pasadena, CA. Summaries, JPL Publ. 99-17, p. 259-266.

LIVO, K. E., WATSON, K., KNEPPER JR., D. H., HUMMER-MILLER, S. (1998). Environmental study of the Bonanza Mining District, Colorado, using AVIRIS, aircraft, satellite, and terrain data. In: JPL Airborne Earth Science Workshop, 7, Pasadena, CA. Summaries, JPL Publ. 97-21, p. 261-267.

MAZER, A. S., MARTIN, M., LEE, M., SOLOMON, J. E. (1988). Image processing software for imaging spectrometry analysis. Remote Sens. Environ., 24 (1):201-210.

MCCORD, T. B., CLARK, R. N., HAWKE, B. R., MCFADDEN, L. A., OWENSBY, P. D., PIETERS, C. M., ADAMS, J. B. (1981). Moon: near-infrared spectral reflectance, a first good look, J. Geophys. Res., 86:10.883-10.892.

MCCUBBIN, I., LANG, H., GREEN, R., LANG, H., ROBERTS, D. (1998). Mineral mapping AVIRIS data at Ray Mine AZ. In: JPL Airborne Earth Science Workshop, 7, Pasadena, CA. Summaries, JPL Publ. 97-21, p. 269-272.

PINORI, S., BELLUCCI, G. (2001), Imaging spectroscopy of selected regional dark mantle deposits of the Moon. Planetary and Space Science, 49 (2001) 487–500.

RIAZA, K. H., ZOCK, A., MÜLLER, A. (1998), Mineral Mapping in Maktesh_Ramon (ISRAEL) Using DAIS 7915, In: EARSeL Workshop on Imaging Spectroscopy, 1, University of Zurich, Switzerland. Proceedings, p. 365-373.

ROWAN, L. C., MARS, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ., 84:350–366.

SWAYZE, G. A., CLARK, R. N., PEARSON, R. M., LIVO, K. E. (1996). Mapping acidgenerating minerals at the California Gulch Superfund Site in Leadville, Colorado using imaging spectroscopy. In: JPL Airborne Earth Science Workshop, 6, Pasadena, CA. Summaries, JPL Pub. 96-1 v.1.

SWAYZE, G., CLARK, R. N., GOETZ, A. F., LIVO, K. E., BISDORF, R. J., SUTLEY, S. J., (1998a). Using imaging spectroscopy to better understand the hydrothermal and tectonic history of the Cuprite Mining District, Nevada. In: JPL Airborne Earth Science Workshop, 7, Summaries, JPL Publ. 97-21, p. 385-390.

SWAYZE, G., CLARK, R. N., HAGEMAN, P. L., SMITH, K. S., SUTLEY, S. J., BRIGGS, P. H., SINGLETON, M. J., MEIER, A. L., PEARSON, R. M., RUST, G. S. (1998b). Using imaging spectroscopy to cost-effectively locate acid-generating minerals at mine sites: an example from the California Gulch Superfund Site in Leadville, Colorado. In: Airborne Earth Science Workshop, 7, Pasadena, CA. Summaries, JPL Pub. 97-21, p. 383-384.

SWAYZE, G., CLARK, R. N., KRUSE, F., SUTLEY, S., GALLAGHER, A. (1992). Groundtruthing AVIRIS mineral mapping at Cuprite, Nevada. In: Annual JPL Airborne Geoscience Workshop, 4, Pasadena, CA. Summaries, JPL Publ. 92-14, p. 69-71.

YUHAS, R. H., GOETZ, A. F. H., BOARDMAN, J. W. (1992). Discrimination among Semi-Arid landscape endmembers using Spectral Angle Mapper (SAM) Algorithm. In: Annual JPL Airborne Geoscience Workshop, 4, Pasadena, CA. Summaries, JPL Publ. 92-14, p 147-150.

Downloads

Publicado

01/21/2022

Como Citar

Abílio de Carvalho Júnior, O., Ferreira de Carvalho, A. P. ., Fontes Guimarães, R., Meneses, P. R., & Shimabukuro, Y. E. (2022). MISTURA ESPECTRAL: (II) CLASSIFICADORES ESPECTRAIS PARA IDENTIFICAÇÃO. Revista Espaço E Geografia, 6(1), 175–197. https://doi.org/10.26512/2236-56562003e39723