CORREÇÃO ATMOSFÉRICA: CONCEITOS E FUNDAMENTOS
DOI:
https://doi.org/10.26512/2236-56562002e39703Palavras-chave:
sensoriamento remoto, correção atmosférica, processamento de imagemResumo
Para a realização de uma análise espectral a partir de sensores remotos é fundamental que se realize uma adequada correção atmosférica. O presente trabalho tem como propósito realizar uma revisão sobre os conceitos e fundamentos da correção atmosférica. Neste propósito, realiza-se uma descrição dos constituintes (gases e particulados) e propriedades ópticas da atmosfera (espalhamento e absorção). Por fim é realizada uma síntese dos principais métodos para a correção atmosférica utilizados no tratamento de imagens de sensores remotos.
Downloads
Referências
Adler-Golden, S., Berk, A.; Bernstein, L. S., Richtsmeier, S., Acharya, P.K., Matthew, M. W., Anderson, G. P., Allred, C. L., Jeong, L. S. & Chetwynd, J. H. (1998), Flaash a MODTRAN4 Atmospheric Correction Package for Hyperspectral Data Retrievals and Simulations, in: Summaries of the Seventh JPL Airborne Earth Science Workshop, JPL Publ. 97-21, Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p.9-14.
Anderson, G. P., Wang, J. & Chetwynd, J. H. (1995), MODTRAN3: an update and recent validations against airborne high resolution interferometer measurements, in: Summaries of Fifth Annual JPL Airborne Earth Science Workshop, JPL 95-1, Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p.5-8.
Berk, A., Bernstein, L. S. & Robertson, D. C. (1989), MODTRAN: A moderate resolution model for LOWTRAN7, Final report, GL-TR-0122, AFGL, Hanscomb AFB, MA, 42p.
Berk, A., Bernstein, L. S., Robertson, D. C., Acharya, P.K., Anderson, G. P. & Chetwynd, J. H. (1996), MODTRAN cloud and multiple scattering upgrade with application in: Proceeding Sixth Annual JPL Airborne Earth Science Workshop, JPL Pub 96-4, Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p.1-7.
Caselles, V., & López García, M. J. (1989). An alternative simple approach to estimate atmospheric correction in multitemporal studies. International Journal of Remote Sensing, 10, 1127– 1134.
Chandrasekhar, S. (1960), Radioative transfer. Dover, Mineola, N.Y. 393pp
Deirmenjdjian, D. (1969), Eletromagnetic scattering on spherical polydispersion. Elselvier, New York, 220p.
Freire, M.L.F. (1996), Correção atmosférica em imagens LANDSAT contaminadas por efeito de adjacência. Dissertação de Mestrado em Meteorologia, Universidade Federal da Paraíba, Campina Grande, 98p.
Gao, B.C., Goetz, A.F.H & Zamudio, J.A. (1991), Removing atmospheric effects from AVIRIS data for surface reflectance retrievals, in: Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publ. 91-28. Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p.80-86
Gao, B.-C.; Heidebrecht, K. B. & Goetz, A. F. H. (1993), Derivation of scaled surface reflectances from AVIRIS data. Remote Sens. Environ. 44:165-178.
Green, R. O. & Gao, B.-G. (1993), A Proposed Uptade to the Solar Irradiance Spectrum Used in LOWTRAN and MODTRAN, in: Proceedings Fourth Annual Airborne GeoScience Workshop, JPL Publ. 93-26. Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p.81-84.
Houghton, D.D. (1985). Handbook of applied meteorology. John Wiley, New York, 1461p.
Idso. B. S. & Gates, D. M. (1966). The energy environment of plants. In: Norman, A G. (Ed.), Advances in Agronomy. Academic Press, New York, p. 171-218.
Iqbal, M. (1983). An introdution to solar radiation. London, Academic Press. 390p.
Irvine, M. (1965). Light scattering by spherical particles: radiation pressure, assimetry factor, and extinction cross section. Journal of the Optical of America, v.55, n.1, p.16-21.
Isaacs, R. G. & Vogelmann, A.M. (1988). Multispectral sensor data simulation based on the multiple scattering LOWTRAN Code. Remote Sensing of the Environment, 26(10):75-99.
Kaufman, Y. J. & Tanré, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, v.30, n.2, p.261-270.
Kneizys, F. X., Shettle, E. P. & Abreu, L. W. (1988). Users guide to LOWTRAN7, AFGLTR-8-0177, Air Force Geophysics. Lab. Bedford, MA. 136p.
Kruse, F.A., Raines, G.L & Watson, K. (1985). Analytical techniques for extraction geologic information from multichannel airborne spectroradiometer and airborne imaging spectrometer data, in: Proceedings An Arbor ERIM, San Francisco, CA, Vol.4, p 309-324.
Liou, K.N. (1980). An Introduction to atmospheric radiation. Academic Press, New York, 392p.
Moran, M. S., Bryant, R., Thome, K., Ni, W., Nouvellon, Y., Gonzalez-Dugo, M. P., Qi, J. & Clarke, T. R. (2001). A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sensing of Environment 78:71–82
Roberts, D. A., Yamaguchi, Y. & Lyon, R. J. P. (1986). Comparison of various techniques for calibration of AIS data, in: Summaries of Airborne Earth Science Data Analysis Workshop, JPL Publ. 86-35. Jet Propulsion Laboratory, Pasadena, CA, Vol. 1, p. 243- 270.
Schowengerdt, R. A. (1997). Remote Sensing: Models and methods for image processing. 2 a ed., Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, 522p.
Slater, P. N. (1980). Remote sensing: optics and optical systems. Reading: AddisonWesley, 575p.
Smith, G. M., & Milton, E. J. (1999). The use of the empirical line method to calibrate remotely sensed data to reflectance. International Journal of Remote Sensing, 20, 2653– 2662.
Tanré, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, J. J., Perbos, J., Deschamps, P. Y. (1990). Description of a Computer Code to Simulated the Satellite Signal in the solar Spectrum: The 5S Code. Int. J. Remote Sensing, v.11, n.4, p.659-668.
Tanré, D.; Deroo, C; Dehaut, P.; Herman, M.; Morrcrette, J.J; Perbos, J.; Deschamps, P.Y. (1986). Simulation of the Satellite Signal in the Solar Spectrum: User’s Guide. L.O.A, Lille, 149p.
Vermote, E.; Tanre, D.; Deuze, J. L.; Herman, M. & Morcrette, J. J. (1996). Second Simulation of the Satellite Signal in the Solar Spectrum (6S), 6S User’s Guide Version 1. NASA-GSFC, Greenbelt, Maryland, 134 p.
WMO (World Meterological Organization). (1986). A preliminary cloudless standard atmosphere for radiotion computation. World Climatic Program, WCP-112, WMO/ TD n. 24.
Zullo Júnior, J. (1994). Correção atmosférica de imagens de satélite e aplicações. Tese de Doutorado. Faculdade de Engenharia Elétrica, Universidade Estadual de Campinas (UNICAMP), Campinas. 191p.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.