Nonlinear dynamical systems seen through the scope of the Quasi-polynomial theory
DOI:
https://doi.org/10.26512/e-bfis.v5i1.9802Palavras-chave:
Non-linear systems.Resumo
A unified theory of nonlinear dynamical systems is presented. The unification relies on the Quasi-polynomial approach of these systems. The main result of this approach is that most nonlinear dynamical systems can be exactly transformed to a unique format, the Lotka-Volterra system. An abstract Lie algebraic structure underlying most nonlinear dynamical systems is found. This structure, based on two sets of operators obeying specific commutation rules and on a Hamiltonian expressed in terms of these operators, bears a strong similarity with the fundamental algebra of quantum physics. From these properties, two forms of the exact general solution can be constructed for all Lotka-Volterra systems. One of them corresponds to a Taylor series in power of time. In contrast with other Taylor series solutions methods for nonlinear dynamical systems, our approach provides the exact analytic form of the general coefficient of that series. The second form of the solution is given in terms of a path integral. These solutions can be transformed back to solutions of the general nonlinear dynamical systems.
Downloads
Referências
L.Brenig: Complete factorisation and analytic solutions of generalized Lotka-Volterra equations, Phys.Lett. A133, 378 (1988)
Y.Takeuchi: Global Dynamical Properties of LotkaVolterra systems (World Scientific, 1994).
S.Baigent, Lotka-Volterra Dynamics-An introduction, http://www.ltcc.ac.uk/courses/BioMathematics/LTCC_LV2010.pdf (2010).
B.Hern´andez-Bermejo, V.Fair´en and L.Brenig: Algebraic recasting of nonlinear systems of ODEs into universal formats, J.Phys.A: Math.Gen. 31, 2415-2430 (1998).
L.Brenig, A.Goriely: Universal canonical forms for timecontinuous dynamical systems, Phys.Rev.A 40, 4119 (1989).
E.H.Kerner: Universal formats for nonlinear differential systems, J.Math.Phys. 22, 1366, (1981).
B.Hern´andez-Bermejo and V.Fair´en: Lotka-Volterra representation of general nonlinear systems, Math.Biosci. 140, 1-32, (1997).
A.Goriely and L.Brenig: Algebraic degeneracy and partial integrability for systems of ordinary differential equations, Physics Letters A 145, 245 (1990).
A.Figueiredo, T.M.Rocha Filho and L.Brenig: Algebraic structures and invariant manifolds of differential systems, J.Math.Phys. 39, 2929 (1998).
A.Figueiredo, T.M.Rocha Filho and L.Brenig: Necessary conditions for the existence of quasi-polynomial invariants: the quasi-polynomial invariants and Lotka-Volterra systems., Physica A, 262, 158 (1999).
T. M. Rocha Filho, A. Figueiredo, L. Brenig : [QPSI] a Maple package for determination of quasi-polynomial symmetries and invariants, Computer Physics Communications 117, 263 (1999).
A. Figueiredo, I. M. Gl´eria, T. M. Rocha Filho : Boundness of solutions and Lyapunov functions in quasipolynomial systems, Physics Letters B 268, 335 (2000).
I. M. Gl´eria, A. Figueiredo, T. M. Rocha Filho : Stability properties of a general class of nonlinear dynamical systems, Journal of Physics A 34, 1 (2001).
B. Hern´andez-Bermejo : Stability conditions and Liapunov functions for quasi-polynomial systems, Appl.Math.Letters 15, 25-28 (2002).
I. M. Gl´eria, A. Figueiredo, T. M. Rocha : A numerical method for the stability analysis of quasi-polynomial vector fields, Nonlinear Analysis - Theory, Methods and Applications 52, 329 (2003).
T. M. Rocha Filho, I. M. Gl´eria, A. Figueiredo : A novel approach for the stability problem in non-linear dynamical systems, Computer Physics Communications 155, 21 (2003).
T. M. Rocha Filho, I. M. Gl´eria, A. Figueiredo, L. Brenig: The Lotka-Volterra canonical format, Ecological Modelling 183, 95 (2005).
Brenig L. and Fairen V : Analytic approach to initialvalue problems in nonlinear systems, J. Math. Phys. 22, 649-652 (1981).
L.Brenig : New special functions solving nonlinear autonomous dynamical systems, arXiv: 0910.2584 (2009).
A.M.Mathai, R.K.Saxena: Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Mathematics vol. 348, Springer (1973).
M. Codutti : NODES : A Nonlinear Ordinary Differential Equations Solver, Proceedings of ISSAC’92 (International Symposium on Symbolic and Algebraic Computation), (Berkeley, 1992).
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este obra será licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional.