

Revista do Professor de Física

Ensino de Física

REVISITANDO O MOVIMENTO CIRCULAR UNIFORME NO PLANO VERTICAL COM O SOFTWARE MODELLUS

REVISITING UNIFORM CIRCULAR MOTION IN THE VERTICAL PLANE USING MODELLUS SOFTWARE

Francisco Romero Araújo Nogueira *1, Mateus Antônio Resende ⁺²

¹Instituto Federal de Educação, Ciência e Tecnologia do Tocantins - Palmas, Tocantins. ²Colégio Militar de Campo Grande - Campo Grande, Mato Grosso do Sul.

Resumo

Este artigo apresenta um estudo detalhado do problema de um corpo em movimento circular uniforme em um plano vertical. As abordagens tradicionais, apresentadas na maioria dos livros, discutem o problema superficialmente e somente em posições específicas do movimento. Foi proposto então, o uso do software Modellus para fazer uma análise completa do movimento ao longo de toda a trajetória. O objetivo é mostrar ao professor que, com a utilização de um recurso didático como esse, o problema em questão pode ser desenvolvido de forma mais clara. Para isso, foi exposto uma sugestão de como utilizar a simulação computacional para construir os conceitos teóricos junto com os estudantes, tornando o processo de ensino-aprendizagem mais dinâmico e capaz de desenvolver ainda, habilidades que podem ser utilizadas em outros conteúdos.

Palavras-chave: movimento circular. simulação computacional. software Modellus.

^{*}romero@ifto.edu.br

⁺mateus.ufsj@gmail.com

Abstract

This article presents a detailed study of the problem of a body in uniform circular motion in a vertical plane. Traditional approaches presented in most books discuss the problem superficially and only in specific positions of the motion. It was then proposed to use thesoftware Modellus to perform a complete analysis of the motion throughout its trajectory. The aim is to show the teacher that, with the use of a didactic resource like this, the problem at hand can be developed more clearly. To this end, a suggestion was made on how to use computational simulation to build theoretical concepts together with students, making the teaching-learning process more dynamic and capable of developing skills that can be used in other topics.

Keywords: circular motion. computational simulation. Modellus software.

I. Introdução

O uso de simulações computacionais tem sido um componente importante no ensino dos fenômenos da Física, dando vida às equações e conceitos, promovendo a compreensão e estimulando diferentes habilidades nos estudantes (BORISH, HOEHN e LEWANDOWSKI, 2022). Um dos grandes desafios enfrentados é inserir esse recurso didático no âmbito escolar, esbarrando por vezes na falta de capacitação dos educadores para desenvolver trabalhos que utilizem essas ferramentas e estimulem a prática em sala de aula (PIRES e VEIT, 2006; HAMERSKI, MCPADDEN, CABALLERO e IRVING, 2022). Por isso, esse trabalho tem como objetivo apresentar um roteiro que possa auxiliar o professor nas aulas de dinâmica do movimento circular através do *software Modellus*.

Embora seja sabido que as Tecnologias da Informação e Comunicação (TIC's) sejam fundamentais para a educação e letramento científico contemporâneos, é preciso explorá-las adequadamente, com planejamento e objetivos claros, respeitando a realidade de cada ambiente escolar e as particularidades de cada assunto abordado (DEVELAKI, 2019). Trabalhos que auxiliam na compreensão dessas tecnologias e como elas podem ser inseridas na formação inicial e continuada de professores, para que eles se familiarizem com a utilização dessas, fazem parte da construção e inserção desses recursos didáticos na educação (NEIDE et al., 2019; HEIDEMANN, ARAUJO e VEIT, 2012).

O *Modellus* é um ambiente virtual de interface simples e intuitiva, que se utiliza de comandos pré-definidos que, aliados a informações matemáticas adicionadas pelo operador, pode realizar cálculos numéricos, gerar gráficos, tabelas e simulações, tudo isso através de uma linguagem básica, sem a necessidade de conhecimentos prévios de programação científica de computadores. O *software* possui potencial para suprir então, uma das necessidades básicas para compreender conteúdos de Física, principalmente, àqueles vistos em mecânica newtoniana, que é analisar situações que envolvam várias forças, construir e interpretar gráficos, aplicar devidamente as fórmulas, entre outras habilidades (ARAUJO, VEIT e MOREIRA, 2004).

Nas próximas páginas, utilizou-se no clássico problema de um corpo que percorre uma trajetória circular no plano vertical, como por exemplo, numa roda-gigante (YOUNG e FREEDMAN, 2016). Para torná-lo mais fácil de ser visualizado pelos estudantes, foi desenvolvido um roteiro no *Modellus* para visualização do movimento da partícula ao longo de toda a sua trajetória. Apresentando, assim, uma visão mais ampla do que está acontecendo ao longo do tempo, diferindo da abordagem mais comum, onde costuma-se analisar apenas o que ocorre nos pontos extremos do movimento.

O artigo está organizado na seguinte forma: na seção II, apresentou-se o problema do movimento circular em um plano vertical. Na seção III, foram mostradas as funcionalidades do *software Modellus* e como ele foi utilizado para simular o problema apresentado. Na seção IV, discutiu-se uma proposta de abordagem desse conteúdo no Ensino Médio. As considerações finais são apresentadas na seção V.

II. MOVIMENTO CIRCULAR UNIFORME EM UM PLANO VERTICAL

Figura 1: Corpo de massa m descrevendo uma trajetória circular de raio R. Fonte: elaborado pelo autor (2024).

Considere um corpo de massa *m* descrevendo uma trajetória circular de raio *R*, com velocidade angular ω constante, em um plano vertical. A posição do objeto, dado que o centro da trajetória está na origem do sistema *Oxy*, conforme Figura 1, é

$$\vec{r} = R \left[\cos \left(\omega t + \theta_0 \right) \hat{i} + \sin \left(\omega t + \theta_0 \right) \hat{j} \right], \tag{1}$$

onde $\omega t + \theta_0 = \theta$, a posição angular do móvel ao longo da trajetória circular. No instante inicial t = 0, $\theta = \theta_0 = 0$, a posição inicial do objeto, que corresponde às coordenadas (x' = R, y' = 0).

Para um objeto movendo-se sobre um apoio que se mantém na direção horizontal, ao longo de uma trajetória circular no plano vertical, duas forças atuam sobre ele: a força peso e a força de contato entre o objeto e o apoio. A força de contato pode ser decomposta em um componente paralelo à superfície do apoio: a força de atrito, $\vec{f_s}$; e outro perpendicular à

superfície: a força normal, \vec{n} (YOUNG e FREEDMAN, 2016, p. 157). Outras forças, como a resistência do ar, por exemplo, não são relevantes para essa análise e serão desconsideradas. Como ilustração desse movimento é possível citar uma pessoa sentada na cadeira de uma roda-gigante em movimento. Outro caso seria um passageiro de um veículo que percorre uma estrada com uma depressão (ou elevação) em formato hemisférico.

Usando a segunda lei de Newton é possível determinar a força de contato $\vec{F_c}$ que atua sobre o objeto ao longo da sua trajetória, pois

$$\sum \vec{F} = \vec{F}_c + \vec{P} = m \frac{d^2 \vec{r}}{dt^2},\tag{2}$$

onde *m* é a massa do móvel e \vec{P} seu peso, dado por

$$\vec{P} = -mg\hat{j}.\tag{3}$$

Substituindo (1) e (3) em (2), e isolando $\vec{F_c}$, tem-se que

$$\vec{F}_c = -m\omega^2 \left\{ R\cos\left(\omega t\right) \hat{i} + \left[R\sin\left(\omega t\right) - g \right] \hat{j} \right\}.$$
(4)

Verifica-se, da Eq. (4), que para o ponto mais alto da trajetória, onde $\theta = \pi/2$, a força de contato é $\vec{F_c} = m \left(-\omega^2 R + g\right) \hat{j}$. Nesse ponto a magnitude da força $\vec{F_c}$ é menor que a do peso \vec{P} do móvel. Já no ponto mais baixo, em $\theta = 3\pi/2$, a força de contato é $\vec{F_c} = m (\omega R + g) \hat{j}$, sendo sua magnitude maior que a do peso \vec{P} do móvel. O comportamento do módulo da força de contato é representado no gráfico da Figura 2.

O componente horizontal, direção \hat{i} da força de contato, Eq.(4), representa a força de atrito estático que atua sobre o objeto ao longo do movimento circular:

$$\vec{f}_s = -m\omega^2 R\cos(\omega t)\hat{i}.$$
(5)

Note, da Eq. (5), que em $\theta = \frac{\pi}{2}$ e $\frac{3\pi}{2}$, o valor da força de atrito estático f_s é zero. Nesses pontos a resultante centrípeta é dada somente pela diferença entre a força normal \vec{n} e o peso \vec{P} , não havendo, portanto, contribuição da força de atrito, que está orientada na direção horizontal.

Nas demais posições, ao longo da trajetória, a força de atrito é diferente de zero, conforme representado no gráfico da Figura 2. Considerando o movimento no sentido anti-horário, a força de atrito aponta no sentido -Ox quando o objeto está subindo, e no sentido +Ox quando está descendo. Nesses trechos da trajetória o corpo de massa *m* tende a escapar, na direção horizontal, da superfície de apoio, conforme prevê a primeira lei de Newton.

Já o componente vertical, direção \hat{j} da força de contato, dado pela Eq. (4), representa a força normal que a superfície exerce sobre o objeto, isto é

$$\vec{n} = \left[-m\omega^2 Rsen(\omega t) + mg \right] \hat{j}.$$
(6)

Note, da Eq. (6), que o menor valor da força normal ocorre em $\theta = \frac{\pi}{2}$, quando o objeto encontra-se no topo da trajetória. O comportamento do módulo da força normal ao longo

Figura 2: Comportamento dos módulos das forças de contato, atrito e normal exercidas sobre o objeto ao longo da trajetória circular vertical com velocidade constante. Fonte: elaborado pelo autor (2023).

de toda a trajetória está representado no gráfico da Figura 2.

III. Simulação

III.1. O Software Modellus

O *Modellus* é um programa de computador, de distribuição gratuita, desenvolvido para construção e execução de modelagens computacionais (VEIT e TEODORO, 2002). Ele foi desenvolvido pela Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa. As versões mais antigas necessitam do sistema operacional Windows, já a versão mais recente, escrita em Java, pode ser utilizada em qualquer sistema operacional.¹ Sua manutenção e aperfeiçoamento é feita por um grupo de especialistas da referida universidade, sob a liderança do Professor Vitor Duarte Teodoro (PASTANA e NEIDE, 2018). Seu uso é amplo e diversificado, em diversas áreas das Ciências, tanto nacional quanto internacionalmente (VEIT e TEODORO, 2002).

De fácil utilização, é uma ferramenta que possibilita a alunos e professores elaborarem, manipularem e explorarem fenômenos físicos através de experimentos conceituais e virtuais, construídos a partir de um modelo matemático, isto é, um conjunto de equações que descrevem o fenômeno em estudo. O estudo de fenômenos físicos é possibilitado pelos recursos oferecidos pelo *software*, como inserção de equações matemáticas, geração de gráficos e tabelas, inserção de objetos para animação entre outros. Esses recursos possibilitam a exploração de fenômenos diversos, de forma dinâmica e interativa, tanto por professores quanto por estudantes.

Para inserir o conjunto de equações (funções, derivadas, taxa de variação, equações diferenciais, diferenças finitas etc.) que compõem o modelo matemático, não é necessário ter conhecimento em linguagem de programação ou metáforas simbólicas (MENDES, COSTA e SOUSA, 2012). O *Modellus* reconhece equações escritas na forma algébrica, ou seja,

¹Link para download: https://docente.ifrn.edu.br/alessandrorolim/informatica-aplicada-a-fisica/software-modellus-4.01/view

praticamente no mesmo formato em que são escritas nos livros ou à mão. Isso é válido tanto para funções quanto para equações diferenciais ordinárias (VEIT e TEODORO, 2002).

III.2. Uma breve apresentação

A Figura 3 mostra a tela inicial do *Modellus*, versão X 0.4.05.² Na parte superior da tela encontram-se as abas de configuração do arquivo de modelagem matemática. A parte central da tela, área em branco, região (a) da Figura 3, é a área onde a simulação é montada. É neste local que os objetos que fazem parte da simulação são inseridos. Esses objetos, figuras, gráficos, vetores entre outros, serão animados conforme o modelo matemático.

A janela *Modelo Matemático* é o campo onde as equações que descrevem o fenômeno são inseridas. As equações devem ser inseridas em formato algébrico, como apresentadas nos livros-texto. Cada grandeza pode ser representada por uma letra, uma palavra, ou várias palavras juntas ou separadas por um sinal não matemático. A equação

$$x = x_0 + v \times t,$$

por exemplo, pode ser escrita nas seguintes formas:

$$x = x_0 + v * t$$

$$posicao = pos_inicial + velocidade * t$$

Na parte inferior da janela *Modelo Matemático* há os campos *Parâmetros* e *Condições Iniciais*. Estes estão destinados a inserção das constantes e outros valores necessários para que a simulação seja realizada.

A janela *Gráfico*, Figura 3 (c), exibe, em tempo real, gráficos de grandezas que fazem parte da simulação. A janela *Tabela*, Figura 3 (d), também exibe em tempo real dados gerados na simulação. A janela *Notas*, Figura 3 (e), é um campo para registro de notas e observações.

No canto inferior esquerdo da tela, Figura 3, encontra-se o ícone *Play*. Ao clicar nele o programa inicia a simulação, parando automaticamente após decorrido o intervalo de tempo pré-estabelecido.

Segue descrição sucinta dos principais elementos de cada aba do software Modellus:

 Aba *Início*: no ícone Ângulo é possível escolher uma unidade de medida para ângulo, com as opções de radianos e graus. No ícone Casas Decimais determina-se o número de casas decimais dos valores numéricos exibidos nas tabelas, gráficos e outros mostradores.

É possível escolher o valor mínimo a partir do qual os valores calculados serão exibidos na forma de potência de base dez. No campo *Limite Exponencial* insere-se o valor do expoente da potência de base dez correspondente a esse valor mínimo. Digitando 2 nesse campo, por exemplo, os valores maiores que 100 serão exibidos em termos de potência de base dez. Os demais ícones dessa aba são comuns e conhecidos de outros *softwares*.

²A descrição aqui apresentada aplica-se quase que integralmente a outras versões desse *software*, incluindo a versão 4.01.

Figura 3: Tela principal do software Modellus versão X 0.4.05. Fonte: elaborado pelo autor (2024).

- Aba Variável Independente: no ícone de mesmo nome é possível escolher a variável independente, ou seja, aquela que não depende de outras variáveis. Para que essa variável seja reconhecida é necessário que ela esteja contida no modelo matemático. O tempo é representado por um t minúsculo e medido em segundos, como variável independente. Sendo o tempo a variável independente, no campo Passo determina-se o intervalo, em segundos, em que cada cálculo será realizado ao longo da simulação.
- Aba Modelo: contém as ferramentas que auxiliam na digitação do modelo matemático. O ícone Interpretar informa se o modelo matemático está correto ou não. Após a inserção das equações do modelo matemático na janela Modelo Matemático, ao clicar em Interpretar, o software exibirá a mensagem Modelo: Ok, se o mesmo estiver correto; caso contrário ele informará que o modelo contém erros. Os ícones Potência, Raiz Quadrada, Delta, Taxa de Variação, entre outros, servem para inserir, nas equações do modelo matemático, potência, raiz quadrada, variação de uma grandeza (Retorna o valor da variação dessa grandeza entre dois passos consecutivos) e a derivada de uma grandeza em relação ao tempo, respectivamente.
- Aba *Gráfico:* possui ferramentas para configuração do gráfico exibido na janela *Gráfico.* Nessa aba é possível escolher as grandezas que devem aparecer no gráfico, as cores

das curvas, a escala do gráfico entre outras configurações.

- Aba *Tabela:* contém opções para configuração da tabela exibida na janela *Tabela*. Nela escolhe-se quais grandezas devem aparecer na tabela entre outras configurações.
- Aba *Animação*: nela estão os objetos que podem ser inseridos na simulação, sendo animados conforme o modelo matemático. Para inserir um objeto na tela principal (região (a) da Figura 3), clica-se sobre o objeto e em seguida na tela branca. Cada objeto é inserido sobre um sistema de eixos ortogonais *Oxy*. Destaca-se aqui alguns desses objetos: *Partícula*: insere objetos como Lua, Terra, foguete, maçã etc; *Vetor*: insere uma seta indicativa de uma grandeza vetorial; *Caneta*: insere um gráfico, com opções de escolha para as grandezas de cada eixo; *Indicador de Nível*: funciona como um gráfico de barra ou como seletor de valores; e *Analógico*: insere um indicador analógico (mostrador com ponteiro), configurável em três tipos: meia lua (indicador), relógio (variando de 0 a 60) e transferidor (variando entre 0 e 2π). Quando um objeto é inserido, a aba *Propriedade* é ativada. Essa aba contém opções de configurações específicas para cada objeto, como a atribuição de nome, coordenadas, valor de escala. Uma vez inserido o objeto na tela principal, a aba *Propriedades* pode ser ativada simplesmente clicando-se sobre o mesmo.

III.3. Simulação do movimento

Nesta seção é apresentado o roteiro para elaboração da simulação do movimento em questão. As equações que formam o modelo matemático foram inseridas na janela *Modelo Matemático*, e os passos são listados a seguir, conforme a ordem apresentada na Figura 4:

- 1. a componente horizontal da Eq. (1), com $\theta_0 = 0$;
- 2. a componente vertical da Eq. (1), com $\theta_0 = 0$;
- 3. a componente horizontal da Eq. (4), que representa a força de atrito estático;
- 4. a componente vertical da Eq. (4), que representa a força normal;
- 5. o módulo da força de contato, descrita pela Eq. (4). Essa equação não é necessária para a simulação do movimento em si, mas sim para gerar o gráfico do valor absoluto da força de contato ao longo da trajetória, mostrado na Figura 6, curva em vermelho. Esse gráfico é semelhante ao apresentado na Figura 2, exceto pela grandeza do eixo horizontal;
- 6. a componente vertical da Eq.(3), que representa a força peso;
- 7. a componente horizontal da força de contato, dada pela Eq. (5); e
- 8. a resultante das forças na direção vertical, isto é, a soma das componentes verticais das Eq (3) e (4).

Figura 4: Print do modelo matemático de um corpo apoiado em uma superfície em movimento circular uniforme em um plano vertical. Fonte: elaborado pelo autor (2024).

Após a inserção do modelo matemático, faz-se necessário informar os valores dos *Parâmetros* e das *Condições iniciais* da simulação. Esses dados são inseridos na parte inferior da janela *Modelo Matemático* (ver parte inferior da Figura 4). A simulação do movimento aqui tratado não possui condições iniciais, somente parâmetros. São eles: o raio da trajetória, a velocidade angular, a massa do objeto e a aceleração gravitacional. ³

Na sequência, foi inserido um objeto (bolinha azul na Figura 5) representando o corpo realizando o movimento em questão. A esse objeto foram associadas as coordenadas x e y, componentes da Eq. (1).

Em seguida, inseriu-se os vetores representando as forças, e seus respectivos componentes. A Figura 5 mostra os vetores que representam as forças atuando sobre o objeto em movimento circular uniforme em um plano vertical. A seta em amarelo representa o peso do objeto, dado pela Eq. (3). A seta em vermelho representa o vetor força de contato entre o objeto e a superfície de apoio, dado pela Eq. (4). Esse vetor possui um componente na direção horizontal, que é a força de atrito, Eq. (5), e um componente na direção vertical, que é a força normal, Eq.(6). A seta na cor preta representa a força resultante que age sobre o objeto ao longo da trajetória; é a resultante centrípeta do movimento, sempre orientada para o centro da trajetória.

³Esse conjunto de valores pode ser inserido de forma arbitrária, desde que a escala seja devidamente ajustada para que os vetores caibam na tela do computador e gerem um resultado visual apreciável.

Figura 5: Representação dos vetores peso (em amarelo), força de contato e seus componentes (em vermelho) e força resultante (em preto); agindo sobre um corpo apoiado em uma superfície em movimento circular uniforme em um plano vertical. Fonte: elaborado pelo autor (2024).

Figura 6: *Gráfico gerado pelo Modellus da evolução temporal, para uma volta completa, dos valores da força de contato, curva em vermelho, da força de atrito, curva em verde, e da força normal, curva em azul. Fonte: elaborado pelo autor (2024).*

IV. Proposta de abordagem do movimento circular uniforme em um plano vertical no ensino médio

Muitos livros didáticos analisam o movimento aqui tratado somente em dois pontos: na base e no topo da trajetória circular (PENDRILL, 2020). É o caso de algumas obras tradicionalmente utilizadas no Ensino Médio (MÁXIMO, ALVARENGA e GUIMARÃES, 2016) e no Ensino Superior (HALLIDAY, RESNICK e WALKER, 2018; YOUNG e FREEDMAN, 2016; TIPLER e MOSCA, 2014). Nesses pontos, as forças são paralelas ou antiparalelas, simplificando a obtenção da resultante centrípeta que atua sobre o objeto em movimento. Para uma análise das forças ao longo de uma volta completa, faz-se necessário o uso de matemática vetorial e derivada. Isso torna sua abordagem inviável no Ensino Médio. A simulação computacional transpõe essa barreia. Ela possibilita a abordagem e análise de fenômenos físicos em sala de aula cuja descrição faz uso de matemática avançada para o nível dos estudantes.

Como foi possível ver, o *Modellus* é uma ferramenta de simulação que pode ser utilizada para explicar o tema de movimento circular uniforme na vertical em sala de aula. Com ele, é possível construir modelos matemáticos e simular o comportamento do movimento, permitindo que os alunos visualizem e compreendam melhor o fenômeno. Algumas possibilidades de uso em sala são:

- Simulação de um MHS: o professor pode criar um modelo que represente o Movimento Harmônico Simples (MHS), como o de um sistema massa mola ou de um pêndulo simples. Podem ser estudadas ainda funções horárias do movimento, permitindo que os alunos visualizem a trajetória, a velocidade e a aceleração do corpo em diferentes momentos.
- Análise de gráficos: com o *Modellus* é possível criar gráficos que representem a velocidade e a aceleração do movimento circular uniforme na vertical. O professor pode utilizar esses gráficos para explicar os conceitos de velocidade constante e aceleração centrípeta, bem como para mostrar as variações dessas grandezas em diferentes pontos de uma trajetória circular.
- Simulação de uma roda-gigante: utilizando o *software*, o professor pode criar um modelo de uma roda-gigante, representando as cápsulas que se movem em círculos verticais. O modelo pode incluir as equações que descrevem o movimento circular uniforme na vertical das cápsulas, permitindo que os alunos visualizem a trajetória circular, a velocidade e a aceleração das cápsulas em diferentes momentos.

Foi escolhida essa última para sugerir uma sequência didática, elaborada em etapas, que pode ser facilmente aplicada em sala de aula.

 Introdução: o professor pode começar a aula explicando os conceitos de movimento circular uniforme na vertical, como velocidade, aceleração e força centrípeta. Também pode apresentar exemplos de fenômenos que envolvem esse tipo de movimento, como a roda-gigante. Pergunta: Quais outros exemplos de movimento circular uniforme ou não-uniforme na vertical vocês conseguem pensar?

2. Criação do modelo da roda-gigante: após uma breve apresentação do *software* e das suas funcionalidades, o professor pode criar um modelo da roda-gigante e explicar as equações que descrevem o movimento circular uniforme na vertical das cápsulas que se movem em círculos verticais. O modelo deve incluir informações sobre a altura da roda-gigante, o raio da trajetória circular e a velocidade das cápsulas.

Perguntas: Quais as forças envolvidas no movimento da roda-gigante? Como a velocidade de uma cápsula da roda-gigante se relaciona com sua altura?

3. Análise em diferentes pontos: com o modelo da roda-gigante criado, o professor pode utilizar o próprio *software* para analisar a velocidade, a aceleração e a força centrípeta das cápsulas em diferentes pontos da trajetória circular. Pode-se discutir como essas grandezas variam ao longo da trajetória, como mostrado nas Figura 7.

Figura 7: Disposição dos vetores peso (em amarelo), força de contato e seus componentes (em vermelho), e resultante centrípeta (em preto), agindo em diferentes pontos da trajetória. Fonte: elaborado pelo autor (2024).

4. Experimentação: após a análise, o professor pode convidar os alunos a experimentar diferentes configurações da roda-gigante no *Modellus*, como alterar a altura, o raio ou a velocidade das cápsulas. Os alunos podem explorar o *software* e observar como as mudanças nas variáveis afetam o movimento circular uniforme na vertical.

Pergunta: Qual é a importância do movimento circular uniforme na vertical em outras áreas, como na Astronomia ou na Física Nuclear?

V. Considerações finais

O movimento estudado aqui é um tipo específico de movimento circular, onde a intensidade da velocidade permanece constante, alterando somente sua direção e sentido. Estudar esse tipo de movimento é fundamental para que se compreenda a natureza vetorial das forças envolvidas nesse e em outros problemas semelhantes do cotidiano. Devido à complexidade matemática, a abordagem desse assunto nos livros didáticos de Ensino Médio restringe-se à indicação da orientação da resultante entre peso e força normal nos pontos superior e inferior da trajetória, limitando assim a completa compreensão do que ocorre ao longo de todo o caminho que o corpo percorre.

A utilização da simulação que foi apresentada nas últimas páginas possibilita que esse problema seja contornado. Além disso, o *software* utilizado pode servir de auxílio em muitas outras atividades, devido a sua gama de funcionalidades, facilidade de programação e design gráfico agradável. Tornando-o assim, um recurso didático que pode ser explorado em conteúdos para além da mecânica, além de ajudar a desenvolver a capacidade do estudante de interagir com tecnologias da informação e comunicação, utilizando-as como ferramenta de estudo.

Referências

ARAUJO, I. S.; VEIT, E. A.; MOREIRA, M. A. Atividades de modelagem computacional no auxílio à interpretação de gráficos da Cinemática. *Revista Brasileira de Ensino de Física*, v. 26, n. 2, p. 179, 2004.

BORISH, V.; HOEHN, J. R.; LEWANDOWSKI, H. J. Student engagement with modeling in multiweek student-designed lab projects. *Physical Review Physics Education Research*, v. 18, n. 2, p. 020135-1, 2022.

DEVELAKI, M. Methodology and Epistemology of Computer Simulations and Implications for Science Education. *Journal of Science Education and Technology*, v. 28, n. 4, p. 3531, 2019.

HALLIDAY, D.; RESNICK, R.; WALKER, J. *Fundamentos de Física*, v. 1: mecânica. 10 ed. Rio de Janeiro: LTC, 2018.

HAMERSKI, P.C.; MCPADDEN, D.; CABALLERO, M.D.; IRVING, P.W. Students' perspectives on computational challenges in physics class. *Physical Review Physics Education Research*, v. 18, n. 2, p. 020109-1, 2022.

HEIDEMANN, L. A.; ARAUJO, I. S.; VEIT, E. A. Ciclos de Modelagem: uma alternativa para integrar atividades baseadas em simulações computacionais e atividades experimentais no ensino de Física. *Caderno Brasileiro de Ensino de Física. Florianópolis*, v. 29, n. 2, p. 965, 2012.

MÁXIMO, A., ALVARENGA, B. e GUIMARÃES, C. *Física: contexto & aplicações*. 2 ed. São Paulo: Scipione, 2016.

MENDES, J. F.; COSTA, I. F.; SOUSA, C. M.S.G. de. O uso do software Modellus na integração entre conhecimentos teóricos e atividades experimentais de tópicos de mecânica. *Revista Brasileira de Ensino de Física*, v. 34, n. 2, p. 2402, 2012. NEIDE, I. G.; MAMAN, A. S.; DULLIUS, M. M.; BERGMANN, A. B.; QUARTIERI, M. T. Percepções dos professores sobre o uso do software Modellus em uma experiência de modelagem. *Caderno Brasileiro de Ensino de Física*, v. 36, n. 2, p. 567, 2019.

PASTANA, C. de O; NEIDE, I. G. A integração do ensino de funções trigonométricas e movimento harmônico simples por meio do software Modellus. *Revista Brasileira de Ensino de Física*, v. 40, n. 1, p. 1402, 2018.

PENDRILL, A. M. Forces in circular motion: discerning student strategies. *Physics Education*, v. 55, n. 4, p. 045006, 2020.

PIRES, M. A.; VEIT, E. A. Tecnologias de Informação e Comunicação para ampliar e motivar o aprendizado de Física no Ensino Médio. *Revista Brasileira de ensino de Física*, v. 28, n. 2, p. 241, 2006.

TIPLER, P. A.; MOSCA, G. *Física para cientistas e engenheiros*, v. 1: mecânica, oscilações e ondas, termodinâmica, 6 ed. Rio de Janeiro: LTC, 2014.

VEIT, E. A.; TEODORO, V. D. Modelagem no Ensino: Aprendizagem de Física e os Novos Parâmetros Curriculares Nacionais para o Ensino Médio. *Revista Brasileira de Ensino de Física*, v. 24, n. 2, p. 87, 2002.

YOUNG, H. D.; FREEDMAN, R. A. *Física I, Sears e Zemansky*: Mecânica. 14 ed. São Paulo: Pearson Education do Brasil: 2016.