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Abstract

Courses about Quantum Mechanics are generally developed at the level of the mathematical
formalism, its syntactic level, seldom treating the interpretation of the theory, its semantic
level. In the majority of cases, this first formal approach is not followed by any other course
addressing the numerous interpretations of the theory. It has become apparent that this strategy
leads to a deficit in the professional formation of the students, exceedingly driving them to
technical areas of application of Quantum Mechanics. However, applications such as those on
quantum computing and entanglement, as they become more and more encrusted in the deepest
foundations of the theory, are asking more and more for the development of this kind of ability. In
this paper we develop an approach to deal with second quantization in the realm of Quantum
Mechanics. We show that the second quantization Schrödinger equation can be mathematically
derived from a classical Hamiltonian written in the phase space (Q, P), obtained by a canonical
transformation upon the original phase space (q, p), using an axiomatic quantization procedure
developed elsewhere. We apply this quantization process to a bosonic system, modelled by the
harmonic oscillator problem. We then make reverse engineering to show that Schwinger’s second
quantization approach to fermionic systems furnishes the path to derive a Schrödinger equation
explicitly written in terms of the usual momenta and positions operators (q̂, p̂) for such systems.
Finally, we use these mathematical developments to address the commonly accepted statement
that ’the spin has no classical analog’.
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The Schrödinger equation written in the second quantization formalism: . . .

I. Introduction

In his notorious work, Thomas Kuhn introduced the technical concept of manual as
meaning a text devoted to develop the technical aspects of a theory (generally those related
to its mathematical structure). In a sense, manuals are important to give the students
proficiency in the manipulative aspects of the formal structure of the theory. However,
manuals, important as they really are, cannot be considered an exhausting assessment of
the theory, in what it respects to its teaching, because manuals are written in such a way to
precisely hide the theory’s eventual problems or points of disagreement.

It is assumed that the students should first understand the syntactic apparatus of the
theory, become proficient in its use, to finally become in a position to understand its most
intricate interpretation problems. This, of course, can be questioned on the grounds that
even manuals present some interpretation of Quantum Mechanics, even if they do that in
a minimalist perspective. Be it as it may, the fact is that after this first encounter with the
theory, when the student is finally in position to get into contact with the semantic apparatus
of the theory, there are quite a few courses devoted to that, and they are rarely considered as
an integral part of the formation of the student (courses on the interpretation of Quantum
Mechanics are ubiquitously of the elective type, not the obligatory one).

On the other hand, many new applied fields of Quantum Mechanics are becoming
deeply grounded in its interpretation structure. Elements of entanglement and quantum
computation, to cite a few, are receiving much attention presently and they are calling for a
different formation of our students. Nowadays Quantum Mechanics is showing that the
mere formal assessment, with some minimal interpretation, are quickly finding its limits. It
would then be important to take a different path in the teaching of this theory.

Most teachers, formed within the rather technical perspective previously mentioned
don’t feel themselves in condition to make a more philosophical approach of some aspects
of the interpretation of Quantum Mechanics. However, they may feel comfortable with an
approach that pinpoints aspects of the interpretation of Quantum Mechanics precisely by
following closely its formal structure.

The objective of this paper is to discuss the common sense statement that “the quantum
mechanical half integral spin has no classical analog” and its implications. To do that, we
will address another important (and rather obscure) notion of the quantum mechanical
formalism, regarding the role that canonical transformation play within it. Our discussions
will be based on some aspects of the second quantization formalism.

II. Second Quantization

The usual Schrödinger equation (hereafter USE) is generally written in terms of a
Hamiltonian operator Ĥ written in terms of position and momentum operators (q̂, p̂). This
Hamiltonian operator is obtained from the classical Hamiltonian function H(q, p) defined
on the phase-space (q, p) by the substitution q̂ = q and p̂ = −ih̄∂/∂q.

In the literature it is usual to find, after the presentation of USE, the derivation of a second
quantization Schrödinger equation (hereafter SQSE) in terms of creation and annihilation
operators (a†, a). These operators are introduced as a linear transformation of the original
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Figura 1: Quantization processes applied after a canonical transformation to reveal the equivalence between
the Schrödinger equation, written in terms of the usual position and momentum variable (q, p), and
the creation and annihilation operators (a†, a).

(q̂, p̂) operators. This transformation, however, is never the object of criticism, despite the
fact that it involves a transformation on the position and the momentum, which would
characterize a canonical transformation in the realm of Classical Mechanics.

Interesting enough, the transformation normally used in textbooks (GASIOROVICZ,
2003) to pass from USE to SQSE does not correspond to a canonical transformation, when
considered from the point of view of Classical Mechanics. This puts an interrogation mark
on the possible physical equivalence between the original and derived systems described
by such equations. Indeed, from the point of view of Classical Mechanics, canonical
transformations are the only way to guarantee that we keep ourselves within the boundaries
of the same physical system, whenever the original (p,q) variables are taken into new (P, Q)
variables.

Even if we are in the realm of Quantum Mechanics, within which general canonical
transformations are disputable, we are surely not free to make transformations out of
our own device on the variables (q, p) – in the Classical Hamiltonian to proceed with
quantization – nor on the corresponding operators (q̂, p̂). This is most certainly true if we
keep ourselves within the scope of linear canonical transformations (KIM & NOZ, 1991),
which is the type of transformation that takes USE into SQSE.

One of the objectives of this paper is to show how to put the usual second quantization
formalism of a bosonic system on the sound grounds of canonical transformations. To
accomplish that, we first show how to mathematically derive USE from a classical Hamiltonian
and from first principles, based on a very simple axiomatic approach – the quantization
process (process (a) in Figure 1). We then prove that we can begin with a usual harmonic
oscillator system (a paradigm for bosonic systems) written within Classical Mechanics,
make a canonical transformation in the Classical “side” (transformation (b) in Figure 1),
and then use the same quantization process, rephrased in the new variables (quantization
process (c) in Figure 1) to find the correct SQSE in the Quantum “side” (see Figure 1).
The transformation (d) in Figure 1 is the usual way by which one gets SQSE from USE
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(GASIOROWICZ, 2003).
In the context of the second quantization formalism, we then apply the same method to

Schwinger’s representation of fermionic systems in terms of bosonic creation and annihi-
lation operators to find, by reverse engineering, the Schrödinger equation in terms of the
variables (q, p) for a half-integral spin particle (the reverse path: (c) → (b) → (a) in Figure
1). If such an equation is possible, then the usual assumption that “there is no classical
analog for the spin” cannot be sustained. As already argued in the previous section, this is
the other and main objective of this paper. We follow a line of reasoning that would give
traditional teachers all the means to address this semantic aspect of the theory departing
from, and closely linked with, its syntactic apparatus.

This work is organized as follows. In Sec. 2 we review the basic formalism of the
axiomatic derivation to show that we can mathematically derive the usual Schrödinger
equation for any physical system from the associated classical Hamiltonian H(q, p) (process
(a) in Figure 1). This is done to show the soundness of the quantization procedure. This
quantization process will not be of our inquiry at this point, but will be addressed in all its
depth in a future work.

In Sec. 3 we define the canonical transformation (Q, P) = F(q, p) to rewrite the classical
Hamiltonian in the new variables (Q, P) (process (b) in Figure 1). We then apply the
same quantization method to the resulting Hamiltonian H′(Q, P) to rewrite the original
Schrödinger equation in the second quantization formalism (process (c) in Figure 1). We
then show that this process gives the usual method of second quantization (process (d) in
Figure 1) soundness.

In Sec. 4 we use the same quantization process for fermionic systems. These systems
can be written in terms of bosonic creation and annihilation operators using the so called
Schwinger’s representation (SCHWINGER, 1952). We thus find a Schrödinger equation
in terms of momentum and position operators for fermionic systems. We then stress
the connection between these results and those obtained in previous works (OLAVO &
FIGUEIREDO, 1999) about the representation of the half-integral spin in the classical phase
space and discuss the issue of a classical counterpart for the quantum mechanical half-
integral spin.

Section 5 is devoted to our conclusion.

III. The quantization method

The following axioms allow us to mathematically derive the Schrödinger Equation for
any quantum mechanical physical system to which one can furnish a Hamiltonian function
(OLAVO, 2016).

Axiom 1: the joint phase-space probability density function related to any isolated
Quantum Mechanical system is such that

dF(q, p; t)
dt

= 0. (1)
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Axiom 2: the characteristic function of F(q, p; t), written as the Fourier transform

Z(q,δq; t) =
∫ +∞

−∞
F(q, p; t)eipδq/h̄dp , (2)

can be decomposed as

Z(q,δq; t) = ψ∗
(

q − δq
2

; t
)

ψ

(
q +

δq
2

; t
)

. (3)

Note that Z is the usual characteristic function as defined in the particular context of
statistical physics, and in the context of statistics, more generally.

We now assume a Hamiltonian function

H(q, p) =
p2

2m
+ V(q) , (4)

for a single particle with mass m, kinetic energy p2/2m, moving under a one dimensional
potential V(q).

Using axiom 1, we can write

∂F
∂t

+ q̇
∂F
∂q

+ ṗ
∂F
∂p

=
∂F
∂t

+
p
m

∂F
∂q

− ∂V
∂q

∂F
∂p

= 0, (5)

where the second equality follows from Hamilton’s canonical equations of motion for H(q, p)
(GOLDSTEIN, 2011).

By axiom 2, the characteristic function of this system can be written through the Fourier
transform (2), which can be used to take (5) into

− h̄2

m
∂2Z

∂q∂(δq)
+ δq

∂V
∂q

Z = ih̄
∂Z
∂t

. (6)

We now use the fact that the ψ(q; t), whose product gives Z(q,δq; t), are complex functions.
Thus, they can be written in polar form as

ψ(q; t) = R(q; t)e
i
h̄ S(q;t) , (7)

where R and S are real functions of q and t. Thus,

ψ

(
q +

δq
2

; t
)
= R

(
q +

δq
2

; t
)

e
i
h̄ S
(

q+ δq
2 ;t
)

. (8)
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Using a Taylor expansion up to second order in the parameter δq for R and S we find

ψ

(
q +

δq
2

; t
)
≈
[

R(q; t) +
δq
2

∂R(q; t)
∂q

+
(δq)2

8
∂2R(q; t)

∂q2

]
×exp

{
i
h̄

[
S(q; t) +

δq
2

∂S(q; t)
∂q

+
(δq)2

8
∂2S(q; t)

∂q2

]}
.

(9)

From axiom 2 we write the characteristic function as

Z(q,δq; t) = ψ∗
(

q − δq
2

; t
)

ψ

(
q +

δq
2

; t
)
={

R2(q; t) +
(

δq
2

)2
[

R(q; t)
∂2R(q; t)

∂q2 −
(

∂R(q; t)
∂q

)2
]}

×exp
{

iδq
h̄

∂S(q; t)
∂q

}
,

(10)

where we have assumed that the expansion should be done only up to second order – the
deep justification for this assumption is connected to the Central Limit Theorem. This was
shown elsewhere (OLAVO, 2016) and will not be of our concern in this paper.

Finally, with Z already expressed in terms of its decomposition, we put it back into
equation (6) and split the result into real and imaginary parts to get

∂R2(q; t)
∂t

+
∂

∂q

[
R2(q; t)

m
∂S(q; t)

∂q

]
= 0 (11)

and
∂S(q; t)

∂t
+ V(q) +

1
2m

(
∂S(q; t)

∂q

)2

− h̄2

2mR(q; t)
∂2R(q; t)

∂q2 = 0. (12)

These last two equations are exactly the ones we get if we put ψ(q; t), written as in (7),
into the usual Schrödinger equation

− h̄2

2m
∂2ψ(q; t)

∂q2 + V(q)ψ(q; t) = ih̄
∂ψ(q; t)

∂t
. (13)

and separate the result into real and imaginary parts. This result shows that equations (12)
and (11) are mathematically equivalent to (13). We thus have a quite general method to
mathematically derive the Schrödinger equation.

IV. Quantization of a Bosonic System

The most elementary bosonic Hamiltonian is the one related to the harmonic oscillator
system. Since this system is seminal to treat bosonic many-body systems, we focus here
on its quantization process. We already know the result of applying axioms 1 and 2 to the
usual harmonic oscillator system (quantization process (a) in Figure 1). We may now try
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to find the result of the same quantization process applied to a canonically transformed
Hamiltonian.

IV.1. Canonical Transformation

Since Hamilton’s equations are invariant under canonical transformations, our interest
resides on knowing the effect of the transformation (q, p)→ (Q, P) on the harmonic oscillator
system for transformations of the type

Q = µ (aq + ibp) ; P = ν (aq − ibp) , (14)

and their respective inverse transformations

q =
1
2a

(
Q
µ
+

P
ν

)
; p =

1
2ib

(
Q
µ
− P

ν

)
, (15)

with µ, ν, a and b all known (generally complex) constants yet to be determined. We remind
that a sufficient condition for the transformation (14) to be canonical is given by the relations
(GOLDSTEIN, 2011)

∂Q
∂q

=
∂p
∂P

,
∂Q
∂p

= − ∂q
∂P

,

∂P
∂q

= − ∂p
∂Q

and
∂P
∂p

=
∂q
∂Q

.
(16)

The classical Hamiltonian of the harmonic oscillator can be written as

HC = ω

(
p2

2mω
+

mω

2
q2
)

, (17)

where m and ω are the mass and frequency of the system, as usual. Relations (16) and (14)
imply that

µν = − 1
2abi

. (18)

Setting a and b as

a =
√

mω

2
and b =

√
1

2mω
, (19)

we have from (18) the conditions that assure the canonical character of our transformations
(14) as

ab =
1
2

and µν = i . (20)
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Then, transformation (14) can be rewritten as

Q = µ

(√
mω

2
q + i

√
1

2mω
p

)

P = ν

(√
mω

2
q − i

√
1

2mω
p

)
.

(21)

With this canonical transformation our classical Hamiltonian becomes

H′ = −iωQP , (22)

and the Poisson’s brackets for our new canonical coordinates are

{Q, H′} = −iω{Q, QP} = −iωQ =
dQ
dt

, (23)

and
{P, H′} = −iω{P, QP} = iωP =

dP
dt

. (24)

These last two equations could be derived directly from Hamilton’s equations

∂H′

∂P
= Q̇ = −iωQ and

∂H′

∂Q
= −Ṗ = −iωP . (25)

In terms of a new variable
τ = it , (26)

they generate the differential equations

dQ
dτ

= −ωQ and
dP
dτ

= ωP , (27)

and the respective solutions

Q = Q0e−iωt = Q0e−ωτ and P = P0eiωt = P0eωτ , (28)

with Q0 and P0 constants determined by the initial conditions of our system.
The imaginary time τ in (26) appears quite naturally since the transformed Hamiltonian

in (22) is also an imaginary quantity, and the Hamiltonian is the generator of time translations
(GOLDSTEIN, 2011).

IV.2. Quantization Process

Axiom 1 for the transformed Hamiltonian is given by

∂F
∂t

+ Q̇
∂F
∂Q

+ Ṗ
∂F
∂P

= 0 (29)
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and from our equations of motion (23) and (24) we get

∂F
∂t

− iω
(

Q
∂F
∂Q

− P
∂F
∂P

)
= 0, (30)

so that, using our new variable τ = it, we can rewrite the previous equation as

∂F
∂τ

− ω

(
Q

∂F
∂Q

− P
∂F
∂P

)
= 0. (31)

In order to find an equation for Z(Q,δQ;τ), we first write the characteristic function in
axiom 2 in terms of the new variables as

Z(Q,δQ;τ) =
∫ ∞

−∞
F(Q, P;τ)eiPδQ/h̄dP . (32)

Multiplying expression (31) by exp{iPδQ/h̄} and integrating in dP we get, after some
straightforward calculations,

∂Z
∂τ

− ω

[
Q

∂Z
∂Q

+ Z + δQ
∂Z

∂(δQ)

]
= 0. (33)

In terms of the new variables, axiom 2 says that the characteristic function must be
written as the product

Z(Q,δQ;τ) = ψ∗
(

Q − δQ
2

;τ
)

ψ

(
Q +

δQ
2

;τ
)

. (34)

Repeating the same steps presented in section 2 to find USE we get the two equations

∂R2

∂τ
−

∂
(
ωQR2)
∂Q

= 0 (35)

and
∂S
∂τ

− ωQ
∂S
∂Q

= 0. (36)

It is easy to show that these last two equations can be derived from the Schrödinger
equation (we get back to the real time t)

−h̄ω

(
Q

∂ψ

∂Q
+

1
2

ψ

)
= ih̄

∂ψ

∂t
, (37)

or

ω

[
Q

∂ψ

∂Q
+

1
2

ψ

]
= −i

∂ψ

∂t
, (38)

written in terms of the operators Q̂ = Q and P̂ = −ih̄∂/∂Q.
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Indeed, if we represent ψ(Q, t) in its polar representation

ψ(Q, t) = R(Q; t)exp [iS(Q; t)/h̄] , (39)

equation (38) becomes

ωQ
∂R
∂Q

+
iω
h̄

QR
∂S
∂Q

+
ω

2
R = −i

∂R
∂t

+
1
h̄

R
∂S
∂t

=

=
∂R
∂τ

+
i
h̄

R
∂S
∂τ

.
(40)

Splitting this last equation in both real and imaginary parts we find the two equations (36)
and (35), showing that (38) is, indeed, the correct Schrödinger equation.

If we want to pass to the creation and annihilation operators formalism, we may simply
write a† = eiωtQ and a = e−iωt∂/∂Q to rewrite (38) as

h̄ω

(
a†a +

1
2

)
ψ = −ih̄

∂ψ

∂t
, (41)

or, noting that ψ(Q, t) = R(Q; t)exp(iEt/h̄) [the absence of the minus sign comes from the
minus sign in (22)], as

h̄ω

(
a†a +

1
2

)
ψ = Eψ . (42)

With these operators we obtain the commutator[
a, a†

]
ψ =

∂(Qψ)

∂Q
− Q

∂ψ

∂Q
= ψ ⇒

[
a, a†

]
= 1. (43)

Furthermore, ψ(Q; t) = Qn exp(iEt/h̄) is a solution for (42) if E = En =
(

n + 1
2

)
h̄ω, so

that the complete solution can be written as

ψn(Q, t) = Qnei
(

n+ 1
2

)
ωt

φ0 =
(

a†
)n

φ0eiωt/2 , (44)

where φ0, in this representation, is a constant such that aφ0 = ∂φ0/∂Q = 0.

In terms of the operators a and a†, the transformed quantum mechanical Hamiltonian
operator becomes

Ĥ′ =

(
Q

∂

∂Q
+

1
2

)
h̄ω =

(
a†a +

1
2

)
h̄ω , (45)

and the commutators of those new operators with Ĥ′ are given by

[
a, Ĥ′]ψn =

[
∂

∂Q
, Ĥ′
]

ψn =

=

(
∂

∂Q
Q

∂ψn

∂Q
− Q

∂

∂Q
∂ψn

∂Q

)
=

∂ψn

∂Q
= aψn ,

(46)
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and [
a†, Ĥ′

]
=
[
Q, Ĥ′]ψn =

=

(
QQ

∂ψn

∂Q
− Q

∂

∂Q
Qψn

)
= −Qψn = −a†ψn ,

(47)

This means that

a†Ĥ′ − Ĥ′a† = −a† ⇒ Ĥ′a† = a† (Ĥ′ + 1
)

, (48)

and
Ĥ′a − aĤ′ = a ⇒ Ĥ′a = a(Ĥ′ − 1) , (49)

showing that the operators a† and a really behave as, respectively, the creation and annihi-
lation operators in the usual formalism of quantum mechanics (BAYM, 1969). This result
could also be obtained by simply applying directly the operators a and a† to a solution of
the type (44).

IV.3. Representations

We may now take a look at the two representations resulting from the quantization of
two classical Hamiltonian functions connected by a canonical transformation.

We know that the solution of the problem related to the Hamiltonian (17) is simply the
unnormalized function

ψn(q; t) = Hn(q)exp
(
−mω

2h̄
q2
)

exp
[
−i
(

n +
1
2

)
ωt
]

, (50)

where Hn(q) are the Hermite polynomials of order n. The ground state solution is obtained
making n = 0 such that

ψ0(q; t) = exp
(
−mω

2h̄
q2
)

exp
(
− iωt

2

)
. (51)

On the other hand, the unnormalized solution of the same problem, related to the
canonically transformed Hamiltonian (22) is given by

ψn(Q, t) = Qnei
(

n+ 1
2

)
ωt

φ0 =
(

a†
)n

φ0eiωt/2 . (52)

The connection between the two representations is given by writing φ0, which is a
constant in the (Q, P) representation in the previous equation, as

φ0 = exp
(
−mω

2h̄
q2
)

, (53)
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such that, using (21), one gets

ψn(q; t) =

(√
mω

2
q +

√
1

2mω
h̄

d
dx

)n

exp
(
−mω

2h̄
q2
)

exp
[

i
(

n +
1
2

)
ωt
]

, (54)

which is exactly the same result as (50) (apart from an irrelevant complex conjugate) if one
uses the properties of the Hermite polynomials (GRADSHTEYN & RIZHIK, 2000).

The transformation used in textbooks to introduce second quantization (path (d) in
Figure 1) does not present the factors µ and ν. Strictly speaking, this transformation does
not correspond to a classical canonical transformation. However, the µ and ν factors in (21)
are clearly irrelevant, since they disappear with normalization in (54), and this is why their
absence does not introduce any problem.

The representation in (52) is generally called the number representation because, if we use
the transformed Hamiltonian in (22) expressed in terms of Q and P, we get

h̄ω

(
Q

∂

∂Q
+

1
2

)
Qn =

(
n +

1
2

)
h̄ωQn , (55)

n being called the occupation number.

V. Quantization of a Fermionic System

In reference (OLAVO & FIGUEIREDO, 1999), Olavo and Figueiredo proposed a phase-
space representation for half-integral spins. They began from a classical material model for
particles presenting half-integral spins which lead to the functions

S1 =
1

2ω

( px py

m
+ mω2xy

)
, (56)

S2 =
1

4ω

[
mω2(x2 − y2) +

1
m
(p2

x − p2
y)

]
, (57)

S3 =
1
2
(
xpy − ypx

)
, (58)

and

S0 =
1

2ω

[
1
m
(p2

x + p2
y) + mω2(x2 + y2)

]
, (59)

such that
S2 = S2

1 + S2
2 + S2

3 =
1
4

S2
0 , (60)

and {S2,Sj} = 0, for j = 0,1,2,3, where {∗,∗} represents Poisson brackets.
In the quantization procedure, S2 and S3 were written in operator form. They were

such that
[
Ŝ2, Ŝj

]
= 0, for j = 0,1,2,3, where [∗,∗] represents the Dirac commutator. The

half integral spin eigenfunctions were found as the functions that makes these two operators
diagonal (OLAVO & FIGUEIREDO, 1999).
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From equation (60) we see that making diagonal the operator Ŝ0 is the same as making
Ŝ2 diagonal. Indeed, it was shown in reference (OLAVO & FIGUEIREDO, 1999) that if we
write

Ŝ0ψ = h̄λψ , (61)

then we get the operator Ŝ2
h̄ = Ŝ2

0 − h̄2/4 such that

Ŝ2
h̄ψ = h̄2

(
λ − 1

2

)(
λ + 1

2

)
ψ , (62)

or, with N = λ − 1,

Ŝ2
h̄ψ = h̄2

(
N
2

)(
N
2
+ 1
)

ψ . (63)

We can now prove that this approach, with the phase-space functions (56)-(59) gives, in
the second quantization formalism, exactly the same results of Schwinger’s representation
for half-integral spin systems, giving soundness to the phase-space representation of half-
integral spins.

To apply the same quantization procedure used before we transform the extended
canonical transformations (14) through the scale transformation

Q = µ′Q and P = ν′P , (64)

where
µ′ =

1
µ

and ν′ =
1
ν
⇒ µ′ν′ = −i 6= 1, (65)

as it should be for an extended canonical transformation (GOLDSTEIN, 2011).
From now on Q and P shall be understood under the canonical transformation (64), but

we use the same notation as before for convenience. In this context we shall be interested in
the following canonical transformations:

Q1 =

(√
mω

2
x + i

√
1

2mω
px

)
, (66)

Q2 =

(√
mω

2
y + i

√
1

2mω
py

)
, (67)

P1 =

(√
mω

2
x − i

√
1

2mω
px

)
, (68)

and

P2 =

(√
mω

2
y − i

√
1

2mω
py

)
, (69)

With these transformations, our functions Si become

S
′
0 = (Q1P1 + Q2P2) , (70)
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S
′
1 =

1
2
(Q1P2 + Q2P1) , (71)

S
′
2 =

1
2
(Q1P1 − Q2P2) (72)

and
S
′
3 =

1
2i
(Q2P1 − Q1P2) , (73)

where the prime indicates that the functions are now represented in the transformed
coordinate system.

We choose to diagonalize S
′
0 and S

′
3 at the same time. First of all, since we showed in

Sec. 2 and 3 that both representations to obtain the USE and SQSE are equivalent, writing
Pj = −ih̄∂/∂Qj with j = 1,2 and following the same quantization procedure as the one we
used to get equation (42), we obtain the operators

Ŝ
′
0 = −ih̄

(
Q1

∂

∂Q1
+ Q2

∂

∂Q2

)
(74)

and

Ŝ
′
3 = − h̄

2

(
Q2

∂

∂Q1
− Q1

∂

∂Q2

)
. (75)

In a similar definition, we shall use the operators

a†
j = eiωtQj and aj = e−iωt ∂

∂Qj
, (76)

with j = 1,2, and the corresponding commutation relations (43) so that

Ŝ
′
0 = −ih̄

(
a†

1a1 + a†
2a2

)
(77)

and
Ŝ
′
3 = − h̄

2

(
a†

2a1 − a†
1a2

)
. (78)

Instead of working with the operator Ŝ
′
0 we can work with a new one (as we did in

equation (62)) given by
N̂ = ih̄

(
a†

1a1 + a†
2a2

)
(79)

with eigenvalues (see equation (61))

N = λ − 1. (80)

In terms of the total ‘angular momentum’ we have a similar problem, i.e., we need to
make diagonal the operators Ŝ

′
3 and

Ŝ
′2 = h̄

(
N̂
2

)(
N̂
2
+ 1
)

. (81)
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The not normalized eigenvectors are given by the tensor product in Dirac representation

|φn1φn2〉 = (a†
1)

n1(a†
2)

n2eiωt
∣∣∣φ1

0φ2
0

〉
, (82)

which are precisely the ones obtained in the literature (BAYM, 1969). We also note that the
operators Ŝ

′
i given by

S
′
1 = − ih̄

2

(
a†

1a2 + a†
2a1

)
, (83)

S
′
2 = − ih̄

2

(
a†

1a1 − a†
2a2

)
, (84)

and
S
′
3 = − ih̄

2i

(
a†

2a1 − a†
1a2

)
, (85)

can be rewritten multiplying the expressions by µν = i from the scale transformation (64)
back to the previous coordinates (Q, P), as

S
′
1 =

h̄
2

(
a†

1a2 + a†
2a1

)
, (86)

S
′
2 =

h̄
2

(
a†

1a1 − a†
2a2

)
, (87)

and
S
′
3 =

h̄
2i

(
a†

2a1 − a†
1a2

)
, (88)

matching the ones in the Schwinger representation of angular momentum (DING & XU,
2014; SCHWINGER, 1952).

V.1. The classical representation of half-integral spin

The presentation of the quantum mechanical approach to half-integral spin systems
generally introduce a disruption in the sequence of teaching of Quantum Mechanics. This
teaching is generally done in terms of the usual Schrödinger equation, when step-like
potentials, oscillators and atoms are considered. However, when one comes at the theme of
half-integral spins, the process of teaching suddenly changes to a matrix-like description.

The general assumption behind this sudden change is that the half-integral spin systems
do not have a classical analog, differently from oscillators, atoms and molecules. Thus, having
a classical analog is here assumed as having a classical Hamiltonian (as the systems already
mentioned), such that a Schrödinger equation based on q̂, p̂ operators obtains in the usual
quantization process. This is the meaning of “having a classical analog”.

However, what the previous developments show is that there is such a classical represen-
tation and, in fact, it was always at hand after Schwinger had introduced his representation.
This seems obvious when one thinks of the creation and annihilation operators as position
and momentum operators, however in a distinct representation, which are the result of
canonical transformation on some Hamiltonian function.

38 Universidade de Brasília



The Schrödinger equation written in the second quantization formalism: . . .

What the previous section shows is the explicit (q, p) representation for these half-integral
spin systems. It also shows that those working within the Schwinger representation are,
indeed, working with a classical representation of the spin, on which it was performed
quantization, although not necessarily knowing that.

VI. Conclusion

The Schrödinger equation may come in different notations. The second quantization
notation is just only one of them. This notation comes as a natural result of a canonical
transformation on the original classical phase space. Thus, passing from the usual (q, p)
representation to the second quantized (a†, a) representation does not represent any dis-
ruption, or need to avoid the use of Schrödinger equation based on differential operators.
On the contrary, despite some technical advantages that it may bring about, the second
quantization formalism simply hides a differential Schrödinger equation.

This means that any system that can be written in terms of such operators must have
a classical analog, as was shown for the half-integral spin systems, although the explicit
classical representation may be difficult to grasp.
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