U-NET aplicada a segmentação de ossos em microtomografias computadorizadas obtidas por radiação síncrotron para análises histomorfométricas

Autores

Palavras-chave:

U-Net, Segmentaçao, Microtomografia Computadorizada, Radiação Síncrotron

Resumo

Atualmente, a inteligência artificial (IA) participa cada vez mais na elaboração de diagnósticos biomédicos. Aplicações clínicas têm utilizado de métodos de aprendizagem profunda (AP) no processo de segmentação, auxiliando no tratamento antecipado de doenças. Partindo desse pressuposto, este trabalho propõe, via Rede Neural Profunda (RNP), U-Net, segmentar imagens de tíbia de rato, tendo como ideia central utilizar arquiteturas de IA somada a técnica de quantificação de imagem, histomorfometria óssea. Para obtenção das imagens foi utilizado a técnica não destrutiva de Microtomografia Computadorizada obtida por raio-x oriundos de Radiação Síncrotron (µTC-RS). O objetivo inicial foi capacitar modelos para eliminar medula e outros artefatos, permanecendo somente osso; tendo como objetivo final buscar contribuir com o estado da arte no que dita o uso de métodos baseados em AP em contrapartida com métodos tradicionais de segmentação, na busca de aplicá-las em imagens biomédicas. Nesse estudo, os modelos desenvolvidos resultaram em uma média aproximada de 90% para a métrica do coeficiente do Sørensen-Dice, demonstrando uma alta taxa de replicabilidade.

Downloads

Não há dados estatísticos.

Referências

Ahmad Z, Rahim S, Zubair M, Abdul-Ghafar J. Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review. Diagn Pathol. 2021;16(1). doi:10.1186/s13000-021-01085-4

Sánchez JCG, Magnusson M, Sandborg M, Carlsson Tedgren Å, Malusek A. Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. Physica Medica. 2020;69. doi:10.1016/j.ejmp.2019.12.014

Paiva K, Meneses AA de M, Barcellos R, et al. Performance evaluation of segmentation methods for assessing the lens of the frog Thoropa miliaris from synchrotron-based phase-contrast micro-CT images. Physica Medica. 2022;94. doi:10.1016/j.ejmp.2021.12.013

Breininger K, Albarqouni S, Kurzendorfer T, Pfister M, Kowarschik M, Maier A. Intraoperative stent segmentation in X-ray fluoroscopy for endovascular aortic repair. Int J Comput Assist Radiol Surg. 2018;13(8). doi:10.1007/s11548-018-1779-6

Chen S, Dorn S, Maier A. Automatic multi-organ segmentation in dual energy CT using 3D fully convolutional network. In: Medical Imaging with Deep Learning: MIDL. ; 2018.

Abrami A, Arfelli F, Barroso RC, et al. Medical applications of synchrotron radiation at the SYRMEP beamline of ELETTRA. In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Vol 548. ; 2005. doi:10.1016/j.nima.2005.03.093

Pinheiro CJG. Desenvolvimento de Um Algoritmo Para Quantificação de Microestruturas Em Tomografias 3D de Objetos Complexos Obtidas Com Radiação Síncrotron. COPPE/UFRJ; 2008.

Meneses AAM, Pinheiro CJG, Rancoita P, et al. Assessment of neural networks training strategies for histomorphometric analysis of synchrotron radiation medical images. Nucl Instrum Methods Phys Res A. 2010;621(1-3). doi:10.1016/j.nima.2010.05.022

Tingelhoff K, Eichhorn KWG, Wagner I, et al. Analysis of manual segmentation in paranasal CT images. European Archives of Oto-Rhino-Laryngology. 2008;265(9). doi:10.1007/s00405-008-0594-z

Cui H, Wang H, Yan K, Wang X, Zuo W, Feng DD. Biomedical image segmentation for precision radiation oncology. In: Biomedical Information Technology. ; 2020. doi:10.1016/b978-0-12-816034-3.00010-9

Ker J, Wang L, Rao J, Lim T. Deep Learning Applications in Medical Image Analysis. IEEE Access. 2017;6. doi:10.1109/ACCESS.2017.2788044

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 9351. ; 2015. doi:10.1007/978-3-319-24574-4_28

Ensrud KE. Epidemiology of fracture risk with advancing age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences. 2013;68(10). doi:10.1093/gerona/glt092

Ma S, Boughton O, Karunaratne A, et al. Synchrotron Imaging Assessment of Bone Quality. Clin Rev Bone Miner Metab. 2016;14(3). doi:10.1007/s12018-016-9223-3

Momose A, Fukuda J. Phase-contrast radiographs of nonstained rat cerebellar specimen. Med Phys. 1995;22(4):375-379. doi:10.1118/1.597472

Sena G, Fidalgo G, Paiva K, et al. Synchrotron X-ray biosample imaging: opportunities and challenges. Biophys Rev. 2022;14(3):625-633. doi:10.1007/s12551-022-00964-4

Meneses AAM, Giusti A, de Almeida AP, et al. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks. Nucl Instrum Methods Phys Res A. 2011;660(1). doi:10.1016/j.nima.2011.08.007

Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: Learning dense volumetric segmentation from sparse annotation. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 9901 LNCS. ; 2016. doi:10.1007/978-3-319-46723-8_49

Monte LA, Oliveira EG, Cordeiro FR, Macario V. Semantic Segmentation for People Detection on Beach Images. Anais do Encontro Nacional de Inteligência Artificial e Computacional (ENIAC). Published online 2021. doi:10.5753/eniac.2021.18295

Ibtehaz N, Rahman MS. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks. 2020;121. doi:10.1016/j.neunet.2019.08.025

Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance of skip connections in biomedical image segmentation. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 10008 LNCS. ; 2016. doi:10.1007/978-3-319-46976-8_19

Kulak CAM, Dempster DW. Bone histomorphometry: a concise review for endocrinologists and clinicians. Arquivos Brasileiros de Endocrinologia & Metabologia. 2010;54(2). doi:10.1590/s0004-27302010000200002

Cooper DML, Turinsky AL, Sensen CW, Hallgrímsson B. Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. The Anatomical Record Part B: The New Anatomist. 2003;274B(1):169-179. doi:10.1002/ar.b.10024

Gonzalez RC, Woods RE. Digital Image Processing. 4th ed. Person; 2018.

Seo H, Badiei Khuzani M, Vasudevan V, et al. Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications. In: Medical Physics. Vol 47. ; 2020. doi:10.1002/mp.13649

Geron A. Hands-On Machine Learning With Scikit-Learn & Tensor Flow.; 2019.

ImageJ. ImageJ User Guide. IJ 146r. Published online 2003. doi:10.1038/nmeth.2019

Sørensen TA. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Skar.. 1948;5.

Sheskin DJ. Handbook of Parametric and Nonparametric Statistical Procedures.; 2020. doi:10.1201/9780429186196

Downloads

Publicado

2023-01-31

Como Citar

Souza Premoli Pinto de Oliveira, V., Destefani Stefanato, E., Jorge Gomes Pinheiro, C., Cély Rodrigues Barroso, R., & Alvarenga de Moura Meneses, A. (2023). U-NET aplicada a segmentação de ossos em microtomografias computadorizadas obtidas por radiação síncrotron para análises histomorfométricas. Revista Interdisciplinar De Pesquisa Em Engenharia, 8(2), 25–35. Recuperado de https://periodicos.unb.br/index.php/ripe/article/view/46854