Numerical analysis of an onshore oscillating water column wave energy converter for different wall slopes
Palavras-chave:
oscillating water column; wave energy; renewable energy; numerical simulationResumo
An alternative to the energy matrix expansion, due to the increase of global electricity demand, is the
renewable sea wave energy source, which has high energy potential. The Oscillating Water Column (OWC) converter
is one of the most studied, although it is not yet used at commercial scale. Therefore, searching the optimal
geometric configuration is fundamental to turn this device viable. This study proposes a numerical analysis of an
onshore OWC for different slopes of chamber walls (from 40o to 90o) and equipped with a Wells turbine. Simulations
of incompressible 2D flows are performed by means of the FLUENT® software, which is based on Reynolds-averaged
Navier-Stokes (RANS) equations. The k-É› turbulence model and the Volume of Fluid (VOF) method are employed.
Analyses of the behavior of run up/down in the front wall, sloshing inside the chamber and the energy balance of the
OWC are carried out for incident waves with periods from 6 to 12 s and height of 1.5 m. Chamber with wall slope of
40o reaches the highest extracted energy (EE) at wave periods of 9 s and 10.5 s (70% of the incident wave energy)
and higher run-up/down on the front wall and sloshing inside the chamber. However, chamber with wall slope of 90o
has more regularity of EE at the range of wave periods, which allows concluding that the choice of the optimal wall
slope depends mainly on the sea state characteristics.
Downloads
Referências
Conde, J.M.P.; Teixeira, P.R.F.; Didier, E. Numerical simulation of an oscillating water column wave energy
converter: comparison of two numerical code. In: Proceedings of the 21th International Offshore and Polar
Engineering Conference, Maui, 2011; pp. 688-674.
Costa, R.S.; Lima, F.J.L.D.; Rüther, R.; Abreu, S.L.D.; Tiepolo, G.M.; Pereira, S.V.; Souza, J.G.D. Atlas Brasileiro de
Energia Solar, 2ª ed.: INPE. São José dos Campos ”“ SP, 2017 (in Portuguese).
Dean, R.G.; Dalrymple, R.A. Water wave mechanics for engineers and scientists. First Published in 1984 by
Prentice Hall, Inc. World scientific publishing Co. Pte. Ltd., London, 2000.
Dias, J.; Mendonça, A.; Didier, E.; Neves, M.G.; Conde, J.M.P.; Teixeira, P.R.F. Application of URANS-VOF models
in hydrodynamics study of oscillating water column. In: Proceedings of SCACR2015 - International Short
Course/Conference on Applied Coastal Research, Florence, Italy, 2015.
Didier, E.; Teixeira, P.R.F.; Neves, M.G. A 3D Numerical Wave Tank for Coastal Engineering Studies. Defect and
diffusion forum: 2016, volume 372, pp. 1-10.
Elhanafi, A.; Fleming, A.; Macfarlane, G.; Leong, Z. Numerical energy balance analysis for an onshore oscillating
water column wave energy converter. Enegry 2016, volume 116, pp. 539-557.
Falcão, A.F. Control of an oscillating-water-column wave power plant for maximum energy production. Applied
Ocean Research 2002, volume 24, n. 2, pp. 73-82.
FLUENT, 2016. User’s Guide. ANSYS Inc.
Folley, M.; Whittaker, T. Identification of non-linear flow characteristics of the LIMPET shoreline OWC. In.
Proceedings of The Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan, 2002.
Gaspar, A.L.; Teixeira, P.R.F.; Didier, E. Numerical analysis of the performance of two onshore oscillating water
column wave energy converters at different chamber wall slopes. Ocean Eng. 2020, volume 201, Nº107119.
IEA (International Energy Agency) Key World Energy Statistics 2020. Available in :<
http://energyatlas.iea.org/#!/tellmap/-1118783123> Access in Dec. 2020.
Lagoun, M.S.; Benalia, A.; Benbouzid, M.E.H. Ocean Wave Converters: State of the Art and Current Status. In
Proceedings of International Energy Conference, IEEE 2010. Manama, Bahrain, 2010, pp. 636-641.
Conde, J.M.P.; Teixeira, P.R.F.; Didier, E. Numerical simulation of an oscillating water column wave energy
converter: comparison of two numerical code. In: Proceedings of the 21th International Offshore and Polar
Engineering Conference, Maui, 2011; pp. 688-674.
Costa, R.S.; Lima, F.J.L.D.; Rüther, R.; Abreu, S.L.D.; Tiepolo, G.M.; Pereira, S.V.; Souza, J.G.D. Atlas Brasileiro de
Energia Solar, 2ª ed.: INPE. São José dos Campos ”“ SP, 2017 (in Portuguese).
Dean, R.G.; Dalrymple, R.A. Water wave mechanics for engineers and scientists. First Published in 1984 by
Prentice Hall, Inc. World scientific publishing Co. Pte. Ltd., London, 2000.
Dias, J.; Mendonça, A.; Didier, E.; Neves, M.G.; Conde, J.M.P.; Teixeira, P.R.F. Application of URANS-VOF models
in hydrodynamics study of oscillating water column. In: Proceedings of SCACR2015 - International Short
Course/Conference on Applied Coastal Research, Florence, Italy, 2015.
Didier, E.; Teixeira, P.R.F.; Neves, M.G. A 3D Numerical Wave Tank for Coastal Engineering Studies. Defect and
diffusion forum: 2016, volume 372, pp. 1-10.
Elhanafi, A.; Fleming, A.; Macfarlane, G.; Leong, Z. Numerical energy balance analysis for an onshore oscillating
water column wave energy converter. Enegry 2016, volume 116, pp. 539-557.
Falcão, A.F. Control of an oscillating-water-column wave power plant for maximum energy production. Applied
Ocean Research 2002, volume 24, n. 2, pp. 73-82.
FLUENT, 2016. User’s Guide. ANSYS Inc.
Folley, M.; Whittaker, T. Identification of non-linear flow characteristics of the LIMPET shoreline OWC. In.
Proceedings of The Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan, 2002.
Gaspar, A.L.; Teixeira, P.R.F.; Didier, E. Numerical analysis of the performance of two onshore oscillating water
column wave energy converters at different chamber wall slopes. Ocean Eng. 2020, volume 201, Nº107119.
IEA (International Energy Agency) Key World Energy Statistics 2020. Available in :<
http://energyatlas.iea.org/#!/tellmap/-1118783123> Access in Dec. 2020.
Lagoun, M.S.; Benalia, A.; Benbouzid, M.E.H. Ocean Wave Converters: State of the Art and Current Status. In
Proceedings of International Energy Conference, IEEE 2010. Manama, Bahrain, 2010, pp. 636-641.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Revista Interdisciplinar de Pesquisa em Engenharia
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.