Evaluating the performance of the Inexact-Newton-Krylov scheme using globalization and forcing terms for non-Newtonian flows
DOI:
https://doi.org/10.26512/ripe.v2i34.21805Palavras-chave:
Inexact Newton-Krylov. Backtracking. Non-Newtonian fluids. Forcing terms.Resumo
Non-Newtonian fluids are widely spread in industry. Examples are polymer processing, paint, food production or drilling muds. The dependence of the viscosity on the shear rate adds nonlinearity to the governing equations which complicates solving the transient, incompressible Navier-Stokes equation. Here, we use a semi-discrete stabilized finite element formulation for the governing equation. Often Newton-type algorithms are used to solve the resulting system of nonlinear equations at each time step. Those algorithms can converge rapidly from a good initial guess. However, it may appear that they are too expensive, since exact solutions of the linearized system are required for each iteration step. Therefore, the Inexact Newton-Krylov method (INK) is used to solve the linearized system of the Newton-scheme, reducing the computational effort. Hereby, the balance between the accuracy and the amount of effort per iteration is described by a tolerance, the so-called forcing term. Globalization strategies, like backtracking or trust region methods, are used to enhance the robustness of the INK algorithm. In this study the effects of a globalization strategy and several forcing terms of the Inexact-Newton-Krylov are evaluated. As a globalization strategy a backtracking method is applied. We compare four different forcing terms to verify which one has the best convergence. To do so, we simulate a Bingham fluid of a benchmark cavity and Taylor-Couette flow, both in three-dimensions, and analyze nonlinear and linear convergence effects. We compare the number of linear iterations and CPU time. Results are analyzed and discussed aiming to establish guidelines for an effective INK utilization in practice.
Downloads
Referências
An, H. B., Mo, Z. Y., & Liu, X. P., 2007. A choice of forcing terms in inexact Newton method. Journal of Computational and Applied Mathematics, vol. 200, no. 1, pp. 47.
Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., McInnes, L. C., Rupp, K.,Smith, B., Zampini, S., Zhang, H., & Zhang, H., 2016. PETSc Users /manual. Technical Report ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016.
Bellavia, S., & Berrone, S., 2007. Globalization strategies for Newton-Krylov methods for stabilized FEM discretization of Navier-Stokes equations. Journal of Computational Physics, vol. 226, no. 2, pp. 2317.
Beverly, C., & Tanner, R., 1992. Numerical analysis of three-dimensional Bingham plastic flow. Journal of Non-Newtonian Fluid Mechanics, vol. 42, pp. 85.
Bird, R., Armstrong, R., & Hassager, O., 1987. Dynamics of Polymeric Liquids Vol. 1 Fluid Mechanics. Wiley- Interscience, New York, second ed.
Bodart, N. L. O., Catabriga, L., & Coutinho, A. L. G. A., 2011. Forcing term effects on the inexact newton-krylov method for solving nonlinear equations emanating from stabilized finite element formulations of navier-stokes equations. CILAMCE 2011.
Crochet, M., Davies, A., & Walters, K., 1984. Numerical simulation of non-Newtonian flow. Elsevier, Amsterdam.
Dembo, R. S., Eisenstat, S. C., & Steihaug, T., 1982. Inexact Newton Methods. SIAM Journal on Numerical Analysis, vol. 19, no. 2, pp. 400.
Dennis Jr., S., & Schnabel, R. B., 1983. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall.
Eisenstat, S., & Walker, H., 1996. Choosing the forcing terms in an Inexact Newton method. SIAM Journal of Scientific Computing, vol. 17, pp. 16.
Elias, R., Coutinho, A., & Martins, M., 2004. Inexact-Newton-type methods for non-linear problems arising from the SUPG/PSPG solution of steady incompressible Navier-Stokes equations. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 26, pp. 330.
Elias, R. N., Coutinho, A. L. G. A., & Martins, M. A. D., 2006a. Inexact Newton-type methods for the solution of steady incompressible viscoplastic flows with the SUPG/PSPG finite element formulation. Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 23-24, pp. 3145.
Elias, R. N., Martins, M. A. D., & Coutinho, A. L. G. A., 2006b. Parallel edge-based solution of viscoplastic flows with the SUPG/PSPG formulation. Computational Mechanics, vol. 38, no. 4-5, pp. 365.
Franca, L., & Frey, S., 1992. Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, vol. 99, pp. 209.
Gartling, D., 1992. Finite element methods for non-Newtonian flows. Tech. Rep. SAND92-0886, October, CFD Department Sandia National Laboratories, Albuquerque.
Gomes-Ruggiero, M., Lopes, V., & Toledo-Benavides, J., 2008. A globally convergent inexact Newton method with a new choice for the forcing term. Annals of Operations Research, vol. 157, pp. 193.
Hughes, T., & Tezduyar, T., 1984. Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Computer Methods in Applied Mechanics and Engineering, vol. 45, pp. 217.
Kelley, C. T., 1995. Iterative Methods for Linear and Nonlinear Equations. SIAM.
Mitsoulis, E., & Zisis, T., 2001. Flow of Bingham plastics in a lid-driven square cavity. Journal of Non-Newtonian Fluid Mechanics, vol. 101, pp. 179.
Owens, R., & Phillips, T., 2002. Computational rheology. Imperial College Press.
Papadrakakis, M., & Balopoulos, V., 1991. Improved quasi-Newton methods for large nonlinear problems. Journal of Engineering Mechanics, vol. 117, pp. 1201.
Pawlowski, R., Shadid, J., Simonis, J., & Walker, H., 2006. Globalization techniques for Newton-Krylov methods and applications to the fully coupled solution of the Navier-Stokes equations. SIAM Review, vol. 48, pp. 700.
Rudi, J., Malossi, A. C. I., Isaac, T., Stadler, G., Gurnis, M., Staar, J., P.W., Ineichen, Y., Bekas, C., Curioni, A., Omar, & Ghattas, 2015. An extreme-scale implicit solver for complex pdes: Highly heterogeneous flow in earth’s mantle. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, vol. SC ’15, pp. 5:1.
Tezduyar, T., 1992. Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, vol. 28, pp. 1.
Tezduyar, T., 1999. Finite elements in fluids: Lecture notes of the short course on finite elements in fluids. Computational Mechanics Division, vol. 99-77.
Tezduyar, T., 2001. Finite element methods for flow problems with moving boundaries and interfaces. Archives of Computational Methods in Engineering, vol. 8, pp. 83.
Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Kalro, M., & Litke, M., 1996. Flow simulation and high performance computing. Computational Mechanics, vol. 18, pp. 397.
Tezduyar, T., Mittal, S., & Shih, R., 1991. Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements. Computer Methods in Applied Mechanics and Engineering, vol. 87, pp. 363.
Tezduyar, T. E., & Osawa, Y., 2000. Finite element stabilization parameters computed from element matrices and vectors. Computer Methods in Applied Mechanics and Engineering, vol. 190, pp. 411.
Tuminaro, R.,Walker, F., &Shadid, J., 2002. On backtracking failure in Newton-GMRES methods with a demonstration for the Navier-Stokes equations. Journal of Computational Physics, vol. 180, pp. 549.
Vola, D., Babik, F., & Latch´e, J. C., 2004. On a numerical strategy to compute gravity currents of non-Newtonian fluids. Journal of Computational Physics, vol. 201, no. 2, pp. 397.
Vola, D., Boscardin, L., & Latch´e, J., 2003. Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results. Journal of Computational Physics, vol. 187, pp. 441.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.