INFLUENCE OF THE PIEZOELECTRIC CONSTITUTIVE AND MECHANICAL DUFFING-TYPE NONLINEARITIES ON VIBRATION-BASED ENERGY HARVESTING

Autores

  • Ana Carolina Cellular COPPE-UFRJ
  • Marcelo Savi

DOI:

https://doi.org/10.26512/ripe.v2i29.21786

Palavras-chave:

Smart Materials. Nonlinear Dynamics. Chaos, Energy Harvesting. Piezoelectricity.

Resumo

Vibration-based energy harvesting has the main objective to convert available environment mechanical energy into electrical energy. Piezoelectric materials are usually employed to promote the mechanical-electrical conversion. This work investigates the influence of nonlinear effects in piezoelectric vibration-based energy harvesting. Mechanical nonlinearities are treated considering Duffing-type mechanical oscillator. Piezoelectric nonlinearities are analyzed assuming quadratic constitutive coupling model. Energy harvesting performance is evaluated for different system characteristics being monitored by the input and the generated power. Numerical simulations are carried out considering different kinds of responses, including periodic and chaotic regimes.

Downloads

Não há dados estatísticos.

Referências

Betts D. N., Kim H. A., Bowen C. R. and Inman D. J., 2012, “Optimal configurations of bistable piezo-composites for energy harvesting”, Applied Physics Letters Vol. 100(11), 114104.

Crawley, E. F. and Anderson, E. H., 1990, “Detailed models of piezoceramic actuation of beams”, Journal of Intelligent Material Systems and Structures, Vol. 1, pp. 4-25.

Cottone, F., Vocca, H. and Gammaitoni, L., 2009, “Nonlinear energy harvesting”, Physical Review Letters, Vol. 102, 080601.

De Paula A. S., Inman D. J., and Savi M. A., 2015 “Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation”, Mechanical Systems and Signal Processing, Vol. 54, pp. 405-416.

Erturk, A. and Inman D.J., 2011. “Piezoelectric Energy Harvesting”, John Wiley & Sons Ltd., Chichester, UK.

Leadenham, S. and Erturk, A., 2015. “Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation”, Nonlinear Dynamics, Vol. 79, pp.1727”“1743.

Mann, B. P. and Sims, N. D., 2009, “Energy harvesting from the nonlinear oscillations of magnetic levitation”, Journal of Sound and Vibration, Vol. 319(1), pp.515-530.

Ramlan, R., Brennan, M.J., Mace, B.R. and Kovacic, I., 2010, “Potential benefits of a nonlinear stiffness in an energy harvesting device”, Nonlinear Dynamics, Vol. 59(4), pp.545”“558.

Sebald, G., Kuwano, H., Guyomar, D. and Ducharne, B., 2011, “Experimental Duffing oscillator for broadband piezoelectric energy harvesting”, Smart Materials and Structures, Vol. 20(10), 102001.

Stanton, S.C., McGehee, C.C. and Mann, B.P., 2009, “Reversible hysteresis for broadband magnetopiezoelastic energy harvesting”, Applied Physics Letters, Vol. 95 (17), 174103.

Stanton, S. C., Erturk, A., Mann, B. P. and Inman, D. J., 2010, “Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification”, Journal of Applied Physics, Vol. 108(7), 074903.

Silva, L. L., Monteiro, P. C., Savi, M. A. and Netto, T. A., 2013, “Effect of the piezoelectric hysteretic behavior on the vibration-based energy harvesting”, Journal of Intelligent Material Systems and Structures, Vol. 24(10), pp.1285.

Silva, L. L., Monteiro, P. C., Savi, M. A. and Netto, T. A., 2015, “On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters”, Shock and Vibration, Vol. 2015, Article ID 739381.

Triplett, A. and Quinn, D. D., 2009, “The effect of non-linear piezoelectric coupling on vibration-based energy harvesting”, Journal of Intelligent Material Systems and Structures”, Vol. 20(16), pp.1959-1967.

Downloads

Publicado

2017-02-10

Como Citar

Cellular, A. C., & Savi, M. (2017). INFLUENCE OF THE PIEZOELECTRIC CONSTITUTIVE AND MECHANICAL DUFFING-TYPE NONLINEARITIES ON VIBRATION-BASED ENERGY HARVESTING. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(29), 1–12. https://doi.org/10.26512/ripe.v2i29.21786