SOME ISSUES IN THE GENERALIZED NONLINEAR EIGENVALUE ANALYSIS OF TIME-DEPENDENT PROBLEMS IN THE SIMPLIFIED BOUNDARY ELEMENT METHOD
DOI:
https://doi.org/10.26512/ripe.v2i7.21716Palavras-chave:
Boundary elements. Time-dependent problems. Generalized modal analysis. Quasi-symmetric problems. Deflation method.Resumo
The third author and collaborators have combined and extended Pian’s hybrid finite element formulation and Przemieniecki’s suggestion of displacement-based, frequencydependent elements to arrive at a hybrid boundary element method for the general modal analysis of transient problems. Starting from a frequency-domain formulation, it has been shown that there is an underlying symmetric, nonlinear eigenvalue problem related to the lambda-matrices of a free-vibration analysis, with an effective stiffness matrix expressed as the frequency power series of generalized stiffness and mass matrices. Although the formulation is undeniably advantageous in the analysis of framed structures, for which all coefficient matrices can be analytically obtained, its practical application as a general finite/boundary element analysis tool is questionable. In fact, dealing with large-scale problems calls for simplifications to speed up the numerical evaluations, which unavoidably occur at the cost of the symmetry ”“ or just positive-definitiveness ”“ of the involved matrices. These issues deserve a closer theoretical investigation both in terms of applicability of the method and of the further generalization of the underlying eigenvalue problem, whose efficient solution seems to demand the use of advanced eigenvalue-deflation techniques, among other manipulation possibilities. This is the subject of the present paper, which also includes some illustrative numerical examples.
Downloads
Referências
Aguilar, C. A., 2013. An expedite implementation of the hybrid boundary element method for potential and elasticity problems. Ph.D. Thesis (in Portuguese), PUC-Rio, Brazil.
Bunse-Gerstner, A., 1984. An algorithm for the symmetric generalized eigenvalue problem.
Linear Algebra and its Applications,vol. 58, pp. 43”“68.
Carvalho, J.B., Datta, B., Lin, W., & Wang, C.S., 2006. Symmetry preserving eigenvalue
embedding in finite-element model updating of vibrating structures. Journal of Sound and
Vibration, vol. 290, n. 5, pp. 839”“864.
Carvalho, W.T., 2017. Some issues in the generalized nonlinear eigenvalue analysis of timedependent
problems in the simplified boundary element method. Ph.D. Thesis (in Portuguese),
PUC-Rio, Brazil.
Chaves, R.A.P., 2003. The hybrid simplified boundary element method applied to timedependent
problems. Ph.D. Thesis (in Portuguese), PUC-Rio, Brazil.
Chu, M.T., Hwang, T.-M., & Lin, W.-W., 2005. A novel deflation technique for solving quadratic eigenvalue problems. NCTS Tech-Report, National Tsing Hua University, Hsinchu, Taiwan, pp. 1-19.
corresponding eigenvectors of large real-symmetric matrices. Journal of Computational
Physics, vol. 17, n. 1, pp. 87”“94.
Dumont, N.A., 1994. On the efficient numerical evaluation of integrals with complex
singularity poles. Engineering Analysis with Boundary Elements, vol. 13, n. 2, pp. 155”“168.
Dumont, N.A., 2007. On the solution of generalized non-linear complex-symmetric
eigenvalue problems. International Journal for Numerical Methods in Engineering, vol. 71, n.
, pp. 1534”“1568.
Dumont, N.A., & Aguilar, C.A., 2012. The best of two worlds: The expedite boundary
element method. Engineering Structures, vol. 43, pp. 235-244.
Dumont, N.A., & Chaves, R.P., 2003. General time-dependent analysis with the frequencydomain hybrid boundary element method. Computer Assisted Mechanics and Engineering Sciences, vol. 10, pp. 431”“452.
Dumont, N.A., & Noronha, M.A.M., 1998. A simple, accurate scheme for the numerical evaluation of integrals with complex singularity poles. Computational Mechanics, vol. 22, n. 1, pp. 42”“49.
Dumont, N.A., & Souza, R.M. de, 1992. A simple, unified technique for the evaluation of quasi-singular singular and strongly singular integrals. In C. A. Brebbia, J. Dominguez, & F. Paris, eds. Boundary Elements XIV, pp. 619”“632. Southampton.
Felippa, C., 1998. Linear Algebra: Eigenproblems. Introduction to Finite Element Analysis, pp. 1”“16.
Hayami, K., & Brebbia, C.A., 1988. Quadrature methods for singular and nearly singular integrals in 3-D boundary element method. In C. A. Brebbia, org. Boundary Elements X.
Computational Mechanics Publications, Elsevir Applied Science, pp. 237”“264. Southampton.
Huang, Q., & Cruse, T.A., 1993. Some notes on singular integral techniques in boundary element analysis. International Journal for Numerical Methods in Engineering, vol. 36, n. 15, pp. 2643”“2659.
Hwang, T.-M., Lin, W., Liu, J.L., & Wang, W., 2005. Jacobi-Davidson methods for cubic eigenvalue problems. Numerical Linear Algebra with Applications, vol. 12, n. 7, pp. 605”“624.
Hwang, T.-M., Lin, W.-W., & Mehrmann, V., 2003. Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods. SIAM Journal on Scientific Computing, vol. 24, n. 4, pp. 1283”“1302.
Lachat, J.C., & Watson, J.O., 1976. Effective numerical treatment of boundary integral equations: A formulation for three-dimensional elastostatics. International Journal for Numerical Methods in Engineering, vol. 10, n. 5, pp. 991”“1005.
Money, J.H., & Ye, Q., 2005. Algorithm 845: Eigifp: A MATLAB program for solving large symmetric generalized eigenvalue problems. ACM Transactions on Mathematical Software, vol. 31, n. 2, pp. 270”“279.
Noronha, M.A.M., 1998. Advanced numerical integration techniques and object-oriented programming applied to boundary element methods. Ph.D. Thesis (in Portuguese), PUC-Rio, Brazil.
Pereira, E. & Rosa, C., 2011. A deflation method for regular matrix pencils. Applied Mathematics and Computation, vol 218, n. 6, pp. 2913-2920.
Przemieniecki, J.S., 1968. Theory of matrix structural analysis, New York: McGraw-Hill.
Sleijpen, G.L.G., Booten, A. G. L., Fokkema, D. R., & Vorst, H. A. V. D., 1996. Jacobidavidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numerical Mathematics, vol. 36, n. 3, pp. 595”“633.
Telles, J.C.F., 1987. A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals, International Journal for Numerical Methods in Engineering, vol. 24, pp. 959-973.
Tisseur, F. & Meerbergen, K., 2001. The quadratic eigenvalue problem. SIAM Review, vol. 43, n. 2, pp. 235”“286.
Xie, G., Zhang, J., Qin, X., & Li, G., 2011. New variable transformations for evaluating nearly singular integrals in 2D boundary element method. Engineering Analysis with Boundary Elements, vol. 35, n. 6, pp. 811”“817.
Yang, Y., & Atkinson, K., 1993. Numerical integration for multivariable functions with point singularities, Citeseer.
Zhang, Y.M., Gu, Y., & Chen, J. T., 2009. Boundary layer effect in BEM with high order geometry elements using transformation. Computer Modeling in Engineering and Sciences (CMES), vol. 45, n. 3, pp. 227”“247.
Zhang, Y.-M., Qu, W.-Z., & Chen, J.-T., 2013. BEM analysis of thin structures for thermoelastic problems. Engineering Analysis with Boundary Elements, vol. 37, n. 2, pp. 441”“452.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.