• M. R. A. Souza UFPB
  • F. R. L. Contreras UFPE
  • P. R. M. Lyra UFPE
  • D. K. E. Carvalho UFPE




Oil and Water displacements. Anisotropic Porous Media. MPFA-D. MLP. Modified Flow Oriented Scheme.


In this paperwe simulate two-phase flow in anisotropic petroleum reservoirs. The IMPES procedure is used to solve the coupling between pressure and saturation equations. The pressure equation is discretized by a robust Multipoint Flux Approximation Method with a Diamond-type support. This formulation is capable of reproducing piecewise linear solutions exactly and deals with anisotropic media. To solve the saturation equation a Modified Flow Oriented Scheme (M-FOS) is proposed. This alternative computes the multidimensional numerical fluxes using higher order accuracy in space. This formulation explicitly takes into account the angular distortion of the computational mesh by means of an adaptive weight that tunes the multidimensional character of the formulation according to the grid distortion. A recently devised Multidimensional Limiting Process is adopted in this paper to control the spurious oscillations in higher order approximation. This strategy guarantees monotone solutions and can be used with any polygonal mesh. Finally, an efficient entropy fix strategy, originally proposed in magneto-dynamics context, is also employed in order to produce convergent solutions. The performance of this set of numerical schemes is verified by solving some relevant benchmark problems, where we observe that the Grid Orientation Effects are clearly diminished by using this M-FOS framework.


Não há dados estatísticos.


AZIZ, K. and SETTARI, A. 1979. Petroleum Reservoir Simulation Applied. Science

Publishers Ltd., London, England.

BASTIAN, P. 2002. Higher order discontinuous Galerkin methods for flow and transport in

porous media. In E. Bänsch, editor, Challenges in Scientific Computing ”“ CISC 2002, volume

of Lecture Notes in Computational Science and Engineering, pages 1”“22.

COLELLA, P. 1990. Multidimensional upwind methods for hyperbolic conservation laws

Journal of Computational Physics; 87: 171”“200.

CONTRERAS, F. R. L.; LYRA, P. R. M.; SOUZA, M. R. A.; CARVALHO, D. K. E. 2016.

A cell-centered multipoint flux approximation method with a diamond stencil coupled with a

higher order finite volume method for the simulation of oil”“water displacements in

heterogeneous and anisotropic petroleum reservoirs; Computers & Fluids, 127, 1-16.

DELIS, A. I.; NIKOLOS, I. K. 2012. A Novel Multidimensional Solution Reconstruction and

EdgeBased Limiting Procedure For Unstructured CellCentered Finite Volumes with

Application to Shallow Water Dynamics. Intern. Journ. Num. Methods Fluids; 71: 584-633.

GAO, Z. M.; WU, J. M. 2010. A Linearity-Preserving Cell-Centered Scheme for the

Heterogeneous and Anisotropic Diffusion Equations on General Meshes. International

Journal for Numerical Methods in Fluids; 67: 2157-2183.

GOOCH, O. 1997. Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-

Dependent Least-Squares Reconstruction, J. of Computational Physics; 133: 6”“17.

HERMELINE, F. 2007. Approximation of 2-D and 3-D diffusion operators with variable full

tensor coefficients on arbitrary meshes. Computer meth. App. mech eng; 196: 2497-2526.

HURTADO, F. S. V., MALISKA, A. F., da SILVA, A. F., CORDAZZO, J. 2007. A

Quadrilateral Element-Based Finite-Volume Formulation for the Simulation of Complex

Reservoir. In: SPE paper 107444-MS presented at the SPE Latin American and Caribbean

Petroleum Engineering Conference held in Buenos Aires, Argentina; 15-18.

KOZDON, J. E; MALLISON, B. T.; GERITSEN, G. T. 2011. Multidimensional Upstream

Weighting for Multiphase Transport in Porous Media. Comp. Geoscience; 15: 399”“419.

LAMINE; EDWARDS, M. 2010. Multidimensional Convection Schemes for Flow in Porous

Media on Structured and Unstructured Quadrilateral Grids. J. C. A. Math; 234: 2106-2117.

LAMINE, S.; EDWARDS, M. 2013. Higher Order Cell-Based Multidimensional Upwind

Schemes for Flow in Porous Media on Unstructured Grids. C. M. A. M. Eng.; 259: 103-122.

LEVEQUE, R. J. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge

University Press-London.

PARK, J. S.; YOON, S. H.; KIM, C. 2010. Multi-Dimensional Limiting Process for

Hyperbolic Conservation Laws on Unstructured Grids. J. of Comput. Physics; 229: 788”“812.

SCHNEIDER, G. E. e RAW, M. J. 1986. A Skewed, Positive Influence Coefficient

Upwinding Procedure for Control-Volume-Based Finite-Element Convection-Diffusion

Computation. Numerical Heat Transfer; 9: 1-26.

SERNA, S. 2009. A Characteristic-Based Nonconvex Entropy-Fix Upwind Scheme for the

Ideal Magnetohydrodynamic Equations. Journal of Computational Physics; 228: 4232-4247.

SHU, C. W.; OSHER, S. 1989. Efficient Implementation Of Essentially Non-Oscillatory

Shock-Capturing Schemes 2, Journal of Computational Physics; 83: 32”“78.

SOUZA, M. 2015. Simulação Numérica de Escoamento Bifásico em Reservatórios de

Petróleo Heterogêneos e Anisotrópicos Utilizando um Método de Volumes Finitos

“Verdadeiramente” Multidimensional com Aproximação de Alta Ordem. Tese de doutorado.

UFPE, Recife.

TRAN, D.; MASSON, C.; SMAÃLI, A. 2006. A stable secondorder massweighted upwind

scheme for unstructured meshes. Int. journal for numerical methods in fluids; 51: 749-771.

VAN ALBADA, G. D.; VAN LEER, B. ROBERTS Jr, W. W. 1982. A Comparative Study

of Computational Methods in Cosmic gas Dynamics. Astron. and Astrophysics; 32: 76-84.

VAN LEER, B. 1979. Towards the ultimate conservative difference scheme V: A Secondorder

sequel to Godunov’s method, Journal of Computational Physics.; 32: 101.

VENKATAKRISHNAN, V. 1995. Convergence to Steady-State Solutions of the Euler

Equations on Unstruckred Grids with Limiters. J. Computational Physics. 118: 120-130.




Como Citar

Souza, M. R. A., Contreras, F. R. L., Lyra, P. R. M., & Carvalho, D. K. E. (2017). A MODIFIED FLOW ORIENTATION SCHEME COUPLED WITH A ROBUST MPFA-DIAMOND FOR THE SOLUTION OF TWO-PHASE FLOW IN HIGHLY ANISOTROPIC PETROLEUM RESERVOIRS. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(21), 177–193. https://doi.org/10.26512/ripe.v2i21.21705