• Fernando R. L. Contreras UFPE
  • Marcio R. A. Souza UFPA
  • Paulo R. M. Lyra UFPE
  • Darlan K. E. Carvalho UFPE




Numerical simulation. Oil and Water displacements. Heterogeneous and anisotropic porous media. MPFA-H. MOOD.


In this paper, our main goal is to present a non-classical MPFA method coupled with a high order finite volume method for the simulation of oil water displacements in heterogeneous and anisotropic petroleum reservoirs using general polygonal meshes. The governing equations are solved using the IMPES (IMplicit Pressure and Explicit Saturation) strategy, where the elliptic pressure equation is discretized by a linear Multipoint Flux Approximation method using Harmonic points (MPFA-H) capable to handle strongly heterogeneous and anisotropic media. Besides, to approximate the advective term that characterizes the hyperbolic saturation equation, we use the Multidimensional Optimal Order Detection (MOOD) method. This technique is based in an “a posteriori” limitation procedure, i.e., the limitation procedure is done after the calculation of “candidate solutions” only where necessary to guarantee certain physical properties such as monotonicity. To show the potential of our finite volume formulation, we solve some benchmark problems found in literature.


Não há dados estatísticos.


Aavatsmark, I., Barkve, T., Bøe, O., & Mannseth, T., 1998. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM Journal on Scientific Computing 19.5: 1700-1716. Agelas, L., Eymard, R. & Herbin, R., 2009. A nine point finite volume scheme for the simulation of diffusion in heterogeneous media, C.R. Acad. Sci. Paris Ser, 347:673-676. Bell, J. B., & Shubin, G. R., 1985. Higher-order Godunov methods for reducing numerical dispersion in reservoir simulation. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. Bastian, P., 2014. A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure. Computational Geosciences 18.5: 779-796.

Blasek, J., 2001. Computational Fluid Dynamics: Principles and Applications. Elsevier. Clain, S., Diot, S., & Loubere, R., 2011. A high-order finite volume method for systems of conservation laws Multi-dimensional Optimal Order Detection (MOOD). Journal of computational Physics 230.10: 4028-4050. Colella, P., 1985. A direct Eulerian MUSCL scheme for gas dynamics. SIAM Journal on Scientific and Statistical Computing 6.1: 104-117. Contreras, F. R. L., Lyra, P. R. M., Souza, M. R. A., & Carvalho, D. K. E., 2016. A cell-centered multipoint flux approximation method with a diamond stencil coupled with a higher order finite volume method for the simulation of oil”“water displacements in heterogeneous and anisotropic petroleum reservoirs. Computers & Fluids 127: 1-16. Carvalho, D. K. E., Willmerdorf, R. B. & Lyra, P. R. M., 2009. Some results on the accuracy of an edge”based finite volume formulation for the solution of elliptic problems in non”homogeneous and non”isotropic media. International journal for numerical methods in fluids 61.3: 237-254. Carvalho, D. K. E., Willmersdorf, R. B. & Lyra, P. R. M., 2007. A node”centred finite volume formulation for the solution of two”phase flows in non”homogeneous porous media. International journal for numerical methods in fluids 53.8: 1197-1219. Durlofsky, L. J., 1993. A triangle based mixed finite element finite volume technique for modeling two-phase flow through porous media. Journal of Computational Physics 105.2: 252-266. Edwards, M. G., 1996. A higher-order Godunov scheme coupled with dynamic local grid refinement for flow in a porous medium. Computer Methods in applied mechanics and engineering 131.3: 287-308. Edwards, M. G., & Clive, F. R., 1998. Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Computational Geosciences 2.4: 259-290. Edwards, M. G., 2006. Higher”resolution hyperbolic”coupled”elliptic flux”continuous CVD schemes on structured and unstructured grids in 2”D. International journal for numerical methods in fluids 51.9”10: 1059-1077.

Ewing, R. E., 1983. The mathematics of reservoir simulation. SIAM.

Fuhrmann, J., Ohlberger, M. & Rohde, C., 2014. Finite Volumes for Complex Applications VII: Methods and Theoretical Aspects. Gao, Z. & Wu, J., 2010. A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes. International Journal Numerical Method Fluids, 67:2157-2183. Gao, Z. & Wu, J., 2013. A small stencil and extremum-preserving scheme for anisotropic diffusion on arbitrary 2D and 3D meshes. Journal of Computational Physics, 250,308-331. Hirsch, C., 2007. Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. Butterworth-Heinemann. Kozdon, J. E., Mallison, B. T., & Gerritsen, M. G., 2011. Multidimensional upstream weighting for multiphase transport in porous media. Computational Geosciences 15.3: 399-419.

Lamine, S. & Edwards, M., 2010. Multidimensional upwind convection schemes for flow in porous media on structured and unstructured quadrilateral grids. Journal of Computational and Applied Mathematics, 234:2106-2117. Le Potier, C., 2005. Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non-structurés. Comptes Rendus Mathématique 341.12: 787-792. LeVeque, R. J., & Leveque, R. J., 1992. Numerical methods for conservation laws. Vol. 132. Basel: Birkhäuser.

Lipnikov, K., Shashkov, M., Svyastskiy, D. & Vassilevski, Y., 2007. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. Journal of Computational Physics, 227(1):492-512.

Lönher, R., 2008. Applied computational fluid dynamics techniques: an introduction based on finite element methods. John Wiley & Sons. Peaceman, D. W., 1977. Fundamentals of Numerical Reservoir Simulation. Elsevier, Amsterdam/New York. Park, J. S., Sung-Hwan Y., & Kim, C., 2010. Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids. Journal of Computational Physics 229.3: 788-812. Serna, S., 2009. A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations. Journal of Computational Physics, 228(11), 4232-4247.

Souza, M. R. A., 2015. Simulação Numérica de Escoamento Bifásico em reservatório de Petróleo Heterogêneos e Anisotrópicos utilizando um Método de Volumes Finitos “Verdadeiramente” Multidimensional com Aproximação de Alta Ordem .Tese-UFPE, Brasil. van Leer, B., 1979. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. Journal of computational Physics 32.1: 101-136.

Woodfield, P. L., Kenjiro, S. & Kazuyoshi, N., 2004. A simple strategy for constructing bounded convection schemes for unstructured grids. International Journal Numerical Method Fluids, 46:1007-1024. Yuan, G. & Sheng, Z., 2008. Monotone finite volume schemes for diffusion equations on polygonal meshes. Journal of computational physics 227.12: 6288-6312.




Como Citar

Contreras, F. R. L., Souza, M. R. A., Lyra, P. R. M., & Carvalho, D. K. E. (2017). A MPFA METHOD USING HARMONIC POINTS COUPLED TO A MULTIDIMENSIONAL OPTIMAL ORDER DETECTION METHOD (MOOD) FOR THE SIMULATION OF OIL-WATER DISPLACEMENTS IN PETROLEUM RESERVOIRS. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(21), 76–95. https://doi.org/10.26512/ripe.v2i21.21699