• Elson C. Moraes Federal University of Maranhão
  • Vilson S. Pereira
  • Dalmo I. G. Costa



Quantification of uncertainty. Waveguides. Spectral element method energy. Monte Carlo simulation.


Sound field behaviour in an acoustic enclosure is an important part of the cabin passenger transport vehicle design, concert halls, conference rooms, etc., different analytical methods are available to design engineers, which has its strengths and weaknesses. Cavities in a low-frequency band and negligible absorption on the walls can be modelled by Modal Analysis and Finite Element Method. However, when the frequency band increases, both methods become computationally expensive and Statistical Energy Analysis or Sabine model can be an efficient approach. These methods assume deterministic treatment and almost nothing is known about the effect of uncertainties in the parameters, acoustic velocity and acoustic pressure inside cavities. This paper presents a study on the patterns of density and energy flow generated guide acoustic waves at high frequencies including uncertainties in geometric parameters and property of fluids. The waveguide is modelled by the Spectral Element Method Energy. The mean and variance of energy density and the flow of energy are calculated by using Monte Carlo simulation. Numerical examples show the influence of the random parameters in the different variation of the waveguide.


Não há dados estatísticos.


Cho, P.E., & Bernhard, R.J. 1998. Energy flow analysis of coupled beams. Journal of Sound and Vibration, 211, 593”“605.Doyle, James F. 1997. Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms. New York: Springer-Verlag.

Ghanem, R., & Spanos, P. 1991. Stochastic Finite Elements - A Spectral Approach. Sprin.

J.C.Wohlever, R.J. Bernhard. 1992. Mechanical energy flowmodels of rods and beams. Journal of Sound and Vibration, 153, 1”“19.

Kinsler, Lawrence E., Frey, Austin R., Coppens, Alan B., & Sanders, James V. 1982. Fundamentals of Acoustics. John Wiley & Sons.

Kleiber, M., & Hien, T.D. 1992. The Stochastic Finite Element Method. John Wiley.

Lee, U. 2004. Spectral Element Method in Structural Dynamics. New York: Springer-Verlag.

Lyon, Richard H., & DeJong, Richard G. 1975. Theory and Application of Dynamics Systems, Second edition. Boston: Butterworth-Heinemann.

MaˆÄ±tre, O.P. Le, & Knio, O.M. 2010. Spectral methods for uncertainty quantification. Springer.

Moraes, E. C., Pereira, V. S., & Dos Santos, J. M. C. 2009. Energy spectral element method for acoustic waveguides. In: ABCM (ed), Proceedings of PACAM XI.

Rubinstein, R. Y. 2008. Simulation and the Monte Carlo Method, 2nd Edition. Wiley.

Sampaio, R., & Lima, R. 2012. Modelagem Estoc´astica e Gerac¸ ˜ao de Amostras de Vari´aveis e Vetores Aleat´orios. SBMAC (Notas em Matem´atica Aplicada; v. 70).

Santos, E.R.O., Arruda, J.R.F., & Santos, J.M.C. Dos. 2008. Modeling of coupled structural systems by an energy spectral element method. Journal of Sound and Vibration, 36, 1 ”“ 24.

Sobol’, I. M. 1994. A primer for the Monte Carlo method. CRC Press.

Xiu, D. 2010. Numerical Methods for Computations-A Spectral method approcah. Princeton University Press.

Yamazaki, F., Shinozuka, M., & Dasgupta, G. 1988. Neumann expansion for stochastic finite element analysis. Journal Engineering Mechanics-ASCE, 114 (8), 1335”“1354.

Zhu, W.Q., Ren, Y.J., & Wu, W.Q. 1992. Stochastic FEM based on local averages of random vector fields. Journal Engineering Mechanics-ASCE, 118 (3), 496”“511.




Como Citar

C. Moraes, E., S. Pereira, V., & I. G. Costa, D. (2017). ANALYSIS OF ACOUSTIC WAVEGUIDE THROUGH THE ENERGY SPECTRAL ELEMENT METHOD INCLUDING PARAMETERS UNCERTAINTY. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(16), 116–129.

Artigos mais lidos pelo mesmo(s) autor(es)