• Lorraine Aparecida Silva UFU
  • Bruno Gabriel Gustavo Leonardo Zambolini Zambolini-Vicente IFG
  • Antônio Marcos Gonçalves de Lima UFU



ERA. Composite structures. Modal analysis. Identification of global properties.


This work is placed on the scope of characterization and modeling of structures and the central objective is to establish a computer code capable to provide models for structures of interest from practical experimentation, to be used to refine the computer models a posteriori. To realize that project, the experimental modal analysis was applied in the Eigensystem Realization Algorithm ”“ ERA. As well as most of the techniques of identification of dynamic of systems, the ERA also creates the compute modes, being necessary the application of procedures for filtering the real modes before the noises and/or computers modes. In this work, two techniques for the distinction were used: Modal Amplitude Coherence (MAC) and Modal Singular Value (MSV). Beside this, a novel approach to help interpret and filter based in MSV deviation was proposed and tested, producing good results. To achieve this, a computer code that receives experimental data and returns the global properties of the system, i.e., the natural frequencies, the damping factors and the mode shapes was developed. The preliminary results, developed in the know structure, indicate the code has the potential to handle with complex geometries.


Não há dados estatísticos.


Alves, M. T. S., 2005. Avaliação numérico experimental de métodos ERA/OKID para identificação de sistemas mecânicos, Tese de mestrado, Universidade Federal de Uberlândia. Alvin, K. F., Robertson, A. N., Reich, G. W., & Park, K. C., 2003. Structural system identification: from reality to models. Computers & structures, 81(12), 1149-1176.

Bayard, D.S., 1992. An algorithm for state-space frequency domain identification without windowing distortions, Proceedings of the 31st Conference on Decision and Control, v.2, p.1707-1712. Chiang, D. Y., & Lin, C. S., 2010. Identification of modal parameters from ambient vibration data using eigensystem realization algorithm with correlation technique. Journal of Mechanical Science and Technology, 24(12), p. 2377-2382.

Ho, B. L. and Kalman, R. E., 1965. Effective construction of linear state-variable models from input/output data, Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, IL University of Illinois, p. 449-459. Juang, J. N., & Pappa, R. S., 1985. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of guidance, control, and dynamics, 8(5), p. 620-627.

Kung, S. Y., 1978. A new identification and model reduction algorithm via singular value decomposition. 12th Asilomar Conference on Circuits, Systems and Computers, p 705-714.

Lawton, T, 2015. The aerospace report. Institute of Mechanical Engineering, London, July 2015.

Mouritz, A. P., Bannister, M. K., Falzon, P. J., Leong, K. H., 1999, Review of applications for advanced three-dimensional fibre textile composites. Composites: Part A 30 (1999) 1445-1461. Phan, M., Horta, L. G., Juang, J. N., & Longman, R. W., 1993. Linear system identification via an asymptotically stable observer. Journal of Optimization Theory and Applications, 79(1), 59-86.

Sczibor, V., 2002. Identificação modal de uma estrutura Aeronáutica via algoritmo de realização de sistemas, Tese de mestrado, Escola de Engenharia de São Carlos. Zeiger, P., & McEwan, J., 1973. Approximate Linear Realizations of Given Dimension Via Ho's Algorithm; CU-CS-012-73.




Como Citar

Silva, L. A., Zambolini-Vicente, B. G. G. L. Z., & Lima, A. M. G. de. (2017). APPLICATION OF ERA’S METHOD FOR THE EXPERIMENTAL MODAL ANALYSIS OF COMPOSITE STRUCTURES. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(15), 157–174.

Artigos mais lidos pelo mesmo(s) autor(es)