LARGE DEFLECTION ANALYSIS OF ANISOTROPIC LAMINATED PLATES BY CONTINUOUS AND NON-CONTINUOUS GFEM

Autores

  • Marx Ribeiro UFSC
  • Paulo de Tarso R. Mendonça
  • Clovis S. de Barcellos

DOI:

https://doi.org/10.26512/ripe.v2i14.21372

Palavras-chave:

Laminated plate bending. GFEM. Continuous GFEM. Large displacements in plate.

Resumo

This work addresses the application of the GFEM to laminated plates under moderately large transverse displacements by the von K´arm´an’s hypothesis, in the frame of the Kirchhoff-Love and Reissner-Mindlin kinematical plate models. The formulation admits the general case of laminated plates composed of anisotropic layers in the elastic range. The behaviors of two types of GFEM formulations are compared, one based on C0 continuous Partition of Unity (PoU), and the other is based on continuous PoU. The adequate number of integration points in the element is investigated for each degree of enrichment polynomial. For the transverse shear stresses obtained from integration of the local equilibrium equations, a theorem is presented to explain the reason why, in some cases, the null value is not reached at the end of the integration across the laminate thickness. Numerical results are compared with literature.

Downloads

Não há dados estatísticos.

Referências

Babuˆska, I., Banerjee, U., & Osborn, J. E., 2004. Generalized finite element methods: main ideas, results and perspective. International Journal of Computational Methods, World Scientific, v. 1, n. 01, p. 67-103.

Barcellos, C. S. de, Mendonc¸a, P. T. R., & Duarte, C. A., 2009. A C-k continuous generalized Finite element formulation applied to laminated Kirchhoff plate model. Computational Mechanics, v. 44, n. 3, pp. 377-393. ISSN 01787675.

Chaudhuri R. A., 1986. An equilibrium method for prediction of transverse shear stresses in a thick laminated plate. Computers & structures, Elsevier, v. 23, n. 2, p. 139-146.

Duarte, C. A., Babuˆska, I., & Oden, J., 2000. Generalized finite element methods for threedimensional structural mechanics problems. Computers & Structures, v. 77, n. 2, p. 215- 232. ISSN 0045-7949.

Duarte, C. A., Kim, D. J., & Quaresma, D. M., 2006. Arbitrarily smooth generalized finite element approximations. Computer Methods in Applied Mechanics and Engineering, v. 196, n. 1-3, p. 33-56. ISSN 00457825.

Garcia, O. et al. 2000. hp-Clouds in Mindlin’s thick plate model. Internarional Journal for Numerical Methods in Engineering, v. 47, n. 8, pp. 1381-1400.

Hughes, T. J. R., Taylor, R. L., & Kanoknukulchai, W. 1977. A simple and eficient finite element for plate bending. International Journal for Numerical Methods in Engineering, v. 11, n. 10, p. 1529-1543.

Lee, S. W., & Plan, T. H. H., 1978. Improvement of plate and shell finite elements by mixed formulations. The American Institute of Aeronautics and Astronautics (AIAA), v. 16, n. 1, pp. 29-34.

Levy, S. 1942. Square plate with clamped edges under normal pressure producing large deflections. National Advisory Committee for Aeronautics (Naca) Report No. 737, p 19.

Mendonc¸a, P. T. R., 2005. Materiais compostos e estruturas-sandu´Ä±che: projeto e an´alise. Manole, 2005.

Mendonc¸a, P. T. R., Barcellos, C. S. de, & Torres, D. A. F., 2011. Analysis of anisotropic Mindlin plate model by continuous and non-continuous GFEM. Finite Elements in Analysis and Design, v. 47, n. 7, p. 698-717.

Mendonc¸a, P. T. R., Barcellos, C. S. de, & Torres, D. A. F., 2013. Robust Ck/C0 generalized FEM approximations for higher-order conformity requirements: Application to Reddy’s HSDT model for anisotropic laminated plates. Composite Structures, v. 96, p. 332-345.

Reddy, J. N. 1984. A refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures, v. 20, n. 9-10. ISSN 00207683.

Reddy, J. N., 1989. On refined computational models of composite laminates. International Journal for Numerical Methods in Engineering, v. 27, n. 2, pp. 361-382.

Reddy, J. N., 2004. An Introduction to Nonlinear Finite Element Analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. OUP Oxford, 768 p.

Reddy, J. N., 2006. Theory and analysis of elastic plates and shells. CRC press, pp 568.

Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data. In: 23rd ACM national conference. p. 517-524.

Veiga, L. B. da; Niiranen, J., & Stenberg, R., 2007. A Family of C0 Finite Elements For Kirchhoff Plates I: Error Analysis. Journal on Numerical Analysis, SIAM, v. 45, n. 5, p. 2047-2071.

Ventsel, E., & Krauthammer, T., 2001. Thin plates and shells: theory: analysis, and applications. CRC press, 688 p.

Wandzura, S., & Xiao, H., 2003. Symmetric quadrature rules on a triangle. Computers & Mathematics with Applications, v. 45, n. 12, p. 1829-1840. ISSN 08981221.

Zienkiewicz, O. C., & Taylor, R. L., 1991. The Finite Element Method : Solid and Fluid mechanics dynamics and non-linearity. 4.ed. 807 p. ISBN 0070841756.

Downloads

Publicado

2017-01-30

Como Citar

Ribeiro, M., R. Mendonça, P. de T., & S. de Barcellos, C. (2017). LARGE DEFLECTION ANALYSIS OF ANISOTROPIC LAMINATED PLATES BY CONTINUOUS AND NON-CONTINUOUS GFEM. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(14), 226–244. https://doi.org/10.26512/ripe.v2i14.21372