GFEM STABILIZATION TECHNIQUES APPLIED TO TRANSIENT DYNAMIC ANALYSIS

Autores

  • Paulo de Oliveira Weinhardt Federal University of Paraná
  • Marcos Arndt
  • Roberto Dalledone Machado

DOI:

https://doi.org/10.26512/ripe.v2i14.21368

Palavras-chave:

Dynamic Analysis. GFEM. Partition of Unity. Conditioning. SGFEM.

Resumo

In the context of dynamic analysis of structures, one of the limitations of the Finite Element Method (FEM) is the difficulty of approaching the high frequencies. This lack of precision becomes more significant as the loading excite modes with higher frequencies. Aiming at address this problem one may use the Finite Element Method Generalized / Extended (GFEM /XFEM) to enrich the approximation space and better represent these high frequency modes. Despite the excellent properties of GFEM / XFEM as high accuracy, application versatility and excellent convergence rates, there are aspects that still limit its applicability as the numerical instability associated with this enrichment process even in well-placed boundary value problems. GFEM/XFEM matrices may be ill-conditioned, which may result in a accuracy loss, and even resulting in numerically singular matrices. In this work two proposals are presented to circumvent the GFEM sensitivity problem. Examples of one-dimensional transient analysis are presented and results are discussed analyzing the effects of adopting the preconditioning of enrichment functions strategy.

Downloads

Não há dados estatísticos.

Referências

Arndt, M., 2009. O Método dos Elementos Finitos Generalizados Aplicado à Análise de Vibrações Livres de Estruturas Reticuladas. Tese de doutorado, Universidade Federal do Paraná.

Babuška, I. & Banerjee, U., 2012. “Stable Generalized Finite Element Method (SGFEM)”. Computer Methods in Applied Mechanics and Engineering, Vol. 201-204, pp. 91”“111. doi: 10.1016/j.cma.2011.09.012.

Bathe, K.J., 1996. Finite element procedures. Prentice-Hall.

Gupta, V., Duarte, C.A., Babuška, I. & Banerjee, U., 2013. “A stable and optimally convergent generalized fem (SGFEM) for linear elastic fracture mechanics”. Computer Methods in Applied Mechanics and Engineering, Vol. 266, pp. 23”“39.

Li, H., 2014. Investigation of stability and accuracy of high order generalized finite element methods. Master’s thesis, University of Illinois at Urbana-Champaign.

Monteiro, C.d.S.G., 2009. Novos operadores de captura via o método dos elementos finitos aplicado a problemas de propagação de ondas. Doutorado, Universidade Federal do Rio de Janeiro.

Moura, C.A. & Kubrusly, C.S., 2012. The Courant”“Friedrichs”“Lewy (CFL) Condition: 80 Years After Its Discovery. Springer Science & Business Media, New York.

Shang, Y.H., 2014. Análise dinâmica elastoplástica de problemas da mecânica de sólidos via métodos enriquecidos de elementos finitos. Tese de doutorado, Pontifícia Universidade Católica do Paraná.

Torii, A.J., 2012. Análise dinâmica de estruturas com o Método dos Elementos Finitos Generalizado. Tese de doutorado, Universidade Federal do Paraná.

Weinhardt, P.O., Rauen, M., Machado, R.D. & Arndt, M., 2015. “Aplicação do método dos elementos finitos, análise isogeométrica e métodos enriquecidos à análise dinâmica 1d”. Proceedings of CMN2015, Vol. 1, No. 1.

Downloads

Publicado

2017-01-30

Como Citar

Weinhardt, P. de O., Arndt, M., & Machado, R. D. (2017). GFEM STABILIZATION TECHNIQUES APPLIED TO TRANSIENT DYNAMIC ANALYSIS. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(14), 156–170. https://doi.org/10.26512/ripe.v2i14.21368