ESTUDO SOBRE O COMPORTAMENTO TÉRMICO DE TUBOS DE MATERIAIS COMPÓSITOS SOB AÇÃO DE FOGO

Autores

  • Glauber Batista Marques ufal
  • Severino Pereira Cavalcanti Marques ufal

DOI:

https://doi.org/10.26512/ripe.v2i12.21348

Palavras-chave:

Compósitos poliméricos. Tubos. Alta temperatura. Proteção ao fogo. Modelagem.

Resumo

Este trabalho apresenta um estudo teórico sobre o comportamento de tubos de materiais compósitos poliméricos reforçados por fibras em ambiente de elevada agressividade térmica. A ação térmica externa é assumida como radialmente simétrica e proveniente de uma fonte de calor cuja temperatura varia de acordo com a curva ISO-834. As análises são feitas através de um modelo térmico transiente unidirecional que leva em conta os efeitos da decomposição da resina sobre as propriedades termofísicas do material. O modelo assume que o processo de decomposição da resina é governado pela equação de Arrhenius. O método das diferenças finitas é utilizado para solução numérica do problema. Os exemplos analisados envolvem tubos vazios e cheios de água, com e sem revestimento de proteção ao fogo. A influência de revestimentos de silicato de cálcio sobre a resistência ao fogo é analisada e ilustrada através de gráficos comparativos.

Downloads

Não há dados estatísticos.

Referências

Bai, Y., Vallée, T., Keller, T. 2007. Modeling for thermos-physical properties for FRP composites under elevated and high temperatures. Composites Science and Technology. Volume 67, páginas 3098-3109. Elsevier.

Bai, Y., Vallée, T., Keller, T. 2008. Modeling for thermal responses for FRP composites under elevated and high temperatures. Composites Science and Technology. Volume 68, páginas 47-56. Elsevier.

Bai, Y. Keller, T., Correia, J.R., Branco, F.A., Ferreira, J.G. 2010. Fire protection systems for building floors made of pultruded GFRP profiles ”“ Part 2: Modeling of thermomechanical responses. Composites: Part B. 41, 630-636.

Boyd, S.E., Bausano, J.V., Case, S.W., Lesko J.J. 2011. Mechanistic Approach to Structural Fire Modeling of Composites. Fire Technology, 47, 941”“983.

Chowdhury, E.U., Eedson, R. Bisby, L.A. Green, M.F., Bénichou, N. 2011. Mechanical characterization of fibre reinforced polymers materials at high temperatures. Fire Technology, 47, 1063”“1080.

Davies, J. M., Wang, H. 1998. Heat transfer analysis of GRP pipes in fire-water systems exposed to fire. 17h International Conference on Offshore Mechanics and Arctic Engineering. OMAE98-3095.

Eurocode 1 2002: Actions on Structures - Part 1.2 Actions on Structures Exposed to Fire. European Committee for Standardization (CEN).

Feih, S., Mathys, Z., Gibson, A.G., Mouritz, A.P. 2007. Modelling the tension and compression strengths of polymer laminates in fire. Compos Sci Technol, 67, 551”“64.

Gibson, A.G., Wu, Y-S, Evans, J.T., Mouritz, A.P. 2006. Laminate theory analysis of composites under load in fire. J Compos Mater, 40, 639”“58.

Henderson, J.B., Wiebelt, J.A., Tant, M.R. 1985. A model for the thermal response of polymer composite materials with experimental verification. Journal of Composite Material, Vol. 19, 579-595.

Hollaway, L.C. 2010. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Construction and Building Materials, 24 , 2419”“2445.

Horrocks, A.R., Price, D. 2001. Fire retardant materials. CRC Press.

ISO 1975. Fire Resistance Tests-Elements of Building Construction. International Standard ISO-834 Geneva.

Lattimer, B. Y. 2011. Thermal Response of Composite Materials to Elevated

Temperatures. Fire Technology, 47, 823”“850.

Lattimer, B.Y., Ouellette, J., Trelles J. 2011. Thermal Response of Composite Materials to Elevated Temperatures. Fire Technology, 47, 823”“850

Liu, L., Holmes, J.H., Kardomateas G.A., Birman V. 2011. Compressive Response of Composites Under Combined Fire and Compression Loading. Fire Technology, 47, 985”“1016.

Looyeh, M.R.E., Bettess, P., Gibson A.G. 1997. A one-dimensional finite element simulation for the fire-performance of GRP panels for offshore structures. Int J Numer Methods Heat Fluid Flow, 7, 69”“25.

Luo, C., Lua, J., DesJardin, P.E. 2012. Thermo-mechanical damage modeling of polymer matrix sandwich composites in fire, Composites: Part A, 43, 814”“821.

Mallick, P.K. 2008. Fiber-Reinforced Composites: Materials, Manufacturing and Design. CRC Press, Third Edition, Boca Raton.

Mouritz, A.P., Feih, S., Kandare, E., Mathys, Z., Gibson, A.G., DesJardin, P.E., Case, S.W., Lattimer, B.Y. 2009. Review of fire structural modelling of polymer composites. Composites: Part A , 40, 1800”“1814.

Mouritz, A.P., Gibson, A.G. 2006. Fire Properties of Polymer Composite Materials. Solid Mechanics and its applications. Volume 143. Springer

Ramroth, W.T., Asaro, R.J., Zhu, B., Krysl, P. 2006. Finite element modelling of fire degraded FRP composite panels using a rate dependent constitutive model. Composites: Part A, 37, 1015”“1023.

Summers, P.T, Lattimer, B.Y., Feih, S. 2009. Time-to-failure predictions for polymer laminates in fire. In: Proceedings of the 17th international conference on composite materials, 27”“31 July, Edinburgh, UK.

Zhang, Z., Case, S.W., Lua, J. 2009. A model and finite element implementation for the thermo-mechanical analysis of polymer composites exposed to fire. In: Proceedings of the 17th international conference on composite materials, 27”“31 July, Edinburgh, UK; 2009.

Downloads

Publicado

2017-01-10

Como Citar

Marques, G. B., & Marques, S. P. C. (2017). ESTUDO SOBRE O COMPORTAMENTO TÉRMICO DE TUBOS DE MATERIAIS COMPÓSITOS SOB AÇÃO DE FOGO. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(12), 121–141. https://doi.org/10.26512/ripe.v2i12.21348