• M. A. M. Anunciação UFPR
  • M. A. V. Pinto UFPR
  • L. K. Araki UFPR
  • M. A. Martins UNICENTRO
  • S. F. T. Gonçalves UFPR




Extrapolation methods. Multigrid. Acceleration of convergence. Iteration error.


The focus of this work is analyzing the behavior of the following parameters: the iteration error, the processing time (CPU time) and the convergence factors for two problems of Computational Fluid Dynamics (CFD): the two-dimensional linear heat diffusion problem, governed by a Poisson-like equation, with Dirichlet's boundary conditions, and it is solved by using the Geometric Multigrid Method associated to the following extrapolation methods: Aitken, Empiric, Mitin, Epsilon (scalar and topological), Rho (scalar and topological), Multiple Aitken Extrapolations and Multiple Mitin Extrapolations; and the square lid-driven cavity, governed by Burgers’ equations, with Dirichlet's boundary conditions, solved by using the Geometric Multigrid associated to the Topological Epsilon Extrapolation Method during the Multigrid cycles. According to numerical results, it was observed: the reduction of the magnitude of iteration error, the reduction of non-dimensional residual based on the initial estimate and the reduction of the convergence factor, with a CPU time compatible to the pure Multigrid Method for both problems.


Não há dados estatísticos.


Brezinski C., Zaglia R. M., 2008. A Review of Vector Convergence Acceleration Methods, With Applications to Linear Algebra Problems. Int. J. Quantum Chem., 109, pp. 1631”“1639.

Briggs W. L., Henson V. E., McCormick S. F., 2000. A Multigrid Tutorial, 2 ed. Philadelphia: SIAM.

Burden R. L., Faires J. D., 2005. Numerical analysis, eighth edition, Cengage Learning ”“ Brooks Cole, Florence.

Delahaye J. P., 1988. Sequence Transformations. Berlin: Springer.

Delahaye J. P., Germain-Bonne B., 1982. The set of logarithmically convergent sequences cannot be accelerated. Philadelphia: SIAM.

Galante G., 2006. Multigrid Parallel Methods on Non-structured grids Applied to Simulation of Computational Fluid Dynamic and Heat Transfer Problems (in Portuguese). PhD Thesis. Federal University of Rio Grande do Sul, Porto Alegre, RS.

Gao Q., Jiang Z., Liao T., Song K., 2010. Application of the vector ε and Ï extrapolation methods in the acceleration of the Richardson”“Lucy algorithm, Opt. Commun., 283, pp. 4224”“4229.

Graves-Morris P. R., Roberts D. E., A. Salamc, 2000. The epsilon algorithm and related topics, J. Comput. Appl. Math., 122, pp. 51-80.

Hackbush W., 1985. Multigrid Methods and Applications. Berlin: Springer-Verlag.

Liu H., Yang B., Chen Z., 2015. Accelerating algebraic Multigrid solvers on NVIDIA GPUs. Comput. Math. Appl., 70, pp. 1162-1181.

Maliska C. R., 2004. Computational Heat Transfer and Fluid Mechanics [in Portuguese], 2. ed. Rio de Janeiro: Livros Técnicos e Científicos.

Martins M. A., Marchi C. H.. 2008. Estimate of iteration errors in Computational Fluid Dynamics, Num. Heat Tr. B-Fund., 53, pp. 234-245.

Mitin A. V., 1985. Linear extrapolation in an iterative method for solving systems of equations, U.S.S.R. Comput. Math. Math.+, 25-2, pp. 1-6.

Roy C. J., 2005. Review of Code and Solution Verification Procedures for Computational Simulation. J. Comput. Phys., 205, pp. 131-156.

Shen J., Wang F., Xu J., 2000. Finite element Multigrid preconditioner for Chebyshev”“collocation methods. Appl. Numer. Math., 33, pp. 471-477.

Shih T. M., Tan C. H., Hwang B. C., 1989. Effects of grid staggering on numerical scheme. Int. J. Num. Met. Fluids, 9, pp. 193-212.

Tannehill J. C., Anderson D. A., Pletcher R. H., 1997. Computational Fluid Mechanics and Heat Transfer, Washington: Taylor & Francis.

Thekale A., Grandl T., Klamroth K., Rüde U., 2010. Optimizing the number of Multigrid cycles in full Multigrid algorithm. Numer. Linear Algebr., 17, pp. 199-210.

Trottenberg U., Oosterlee C., Schüller A., 2001. Multigrid, St Augustin, Germany: Academic Press.

Wynn P., 1962. Acceleration techniques for iterated vector and matrix problems. Math. Comput., 16, pp. 301-322.

Zhang J., 1996. Acceleration of Five-Point Red-Black Gauss-Seidel in Multigrid for Poisson equation. Appl. Math. Comput., 80, pp. 73-93.

Zhang W., Zhang C.H., Xi G., 2010. An explicit Chebyshev pseudospectral Multigrid method for incompressible Navier”“Stokes equations. Comput. Fluids, 39, pp. 178-188.




Como Citar

Anunciação, M. A. M., Pinto, M. A. V., Araki, L. K., Martins, M. A., & Gonçalves, S. F. T. (2017). EFFECT OF PARAMETERS OF MULTIGRID METHOD ASSOCIATED WITH EXTRAPOLATORS IN CFD PROBLEMS. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(11), 187–203. https://doi.org/10.26512/ripe.v2i11.21275