EFFECT OF PARAMETERS OF MULTIGRID METHOD ASSOCIATED WITH EXTRAPOLATORS IN CFD PROBLEMS
DOI:
https://doi.org/10.26512/ripe.v2i11.21275Palavras-chave:
Extrapolation methods. Multigrid. Acceleration of convergence. Iteration error.Resumo
The focus of this work is analyzing the behavior of the following parameters: the iteration error, the processing time (CPU time) and the convergence factors for two problems of Computational Fluid Dynamics (CFD): the two-dimensional linear heat diffusion problem, governed by a Poisson-like equation, with Dirichlet's boundary conditions, and it is solved by using the Geometric Multigrid Method associated to the following extrapolation methods: Aitken, Empiric, Mitin, Epsilon (scalar and topological), Rho (scalar and topological), Multiple Aitken Extrapolations and Multiple Mitin Extrapolations; and the square lid-driven cavity, governed by Burgers’ equations, with Dirichlet's boundary conditions, solved by using the Geometric Multigrid associated to the Topological Epsilon Extrapolation Method during the Multigrid cycles. According to numerical results, it was observed: the reduction of the magnitude of iteration error, the reduction of non-dimensional residual based on the initial estimate and the reduction of the convergence factor, with a CPU time compatible to the pure Multigrid Method for both problems.
Downloads
Referências
Brezinski C., Zaglia R. M., 2008. A Review of Vector Convergence Acceleration Methods, With Applications to Linear Algebra Problems. Int. J. Quantum Chem., 109, pp. 1631”“1639.
Briggs W. L., Henson V. E., McCormick S. F., 2000. A Multigrid Tutorial, 2 ed. Philadelphia: SIAM.
Burden R. L., Faires J. D., 2005. Numerical analysis, eighth edition, Cengage Learning ”“ Brooks Cole, Florence.
Delahaye J. P., 1988. Sequence Transformations. Berlin: Springer.
Delahaye J. P., Germain-Bonne B., 1982. The set of logarithmically convergent sequences cannot be accelerated. Philadelphia: SIAM.
Galante G., 2006. Multigrid Parallel Methods on Non-structured grids Applied to Simulation of Computational Fluid Dynamic and Heat Transfer Problems (in Portuguese). PhD Thesis. Federal University of Rio Grande do Sul, Porto Alegre, RS.
Gao Q., Jiang Z., Liao T., Song K., 2010. Application of the vector ε and Ï extrapolation methods in the acceleration of the Richardson”“Lucy algorithm, Opt. Commun., 283, pp. 4224”“4229.
Graves-Morris P. R., Roberts D. E., A. Salamc, 2000. The epsilon algorithm and related topics, J. Comput. Appl. Math., 122, pp. 51-80.
Hackbush W., 1985. Multigrid Methods and Applications. Berlin: Springer-Verlag.
Liu H., Yang B., Chen Z., 2015. Accelerating algebraic Multigrid solvers on NVIDIA GPUs. Comput. Math. Appl., 70, pp. 1162-1181.
Maliska C. R., 2004. Computational Heat Transfer and Fluid Mechanics [in Portuguese], 2. ed. Rio de Janeiro: Livros Técnicos e Científicos.
Martins M. A., Marchi C. H.. 2008. Estimate of iteration errors in Computational Fluid Dynamics, Num. Heat Tr. B-Fund., 53, pp. 234-245.
Mitin A. V., 1985. Linear extrapolation in an iterative method for solving systems of equations, U.S.S.R. Comput. Math. Math.+, 25-2, pp. 1-6.
Roy C. J., 2005. Review of Code and Solution Verification Procedures for Computational Simulation. J. Comput. Phys., 205, pp. 131-156.
Shen J., Wang F., Xu J., 2000. Finite element Multigrid preconditioner for Chebyshev”“collocation methods. Appl. Numer. Math., 33, pp. 471-477.
Shih T. M., Tan C. H., Hwang B. C., 1989. Effects of grid staggering on numerical scheme. Int. J. Num. Met. Fluids, 9, pp. 193-212.
Tannehill J. C., Anderson D. A., Pletcher R. H., 1997. Computational Fluid Mechanics and Heat Transfer, Washington: Taylor & Francis.
Thekale A., Grandl T., Klamroth K., Rüde U., 2010. Optimizing the number of Multigrid cycles in full Multigrid algorithm. Numer. Linear Algebr., 17, pp. 199-210.
Trottenberg U., Oosterlee C., Schüller A., 2001. Multigrid, St Augustin, Germany: Academic Press.
Wynn P., 1962. Acceleration techniques for iterated vector and matrix problems. Math. Comput., 16, pp. 301-322.
Zhang J., 1996. Acceleration of Five-Point Red-Black Gauss-Seidel in Multigrid for Poisson equation. Appl. Math. Comput., 80, pp. 73-93.
Zhang W., Zhang C.H., Xi G., 2010. An explicit Chebyshev pseudospectral Multigrid method for incompressible Navier”“Stokes equations. Comput. Fluids, 39, pp. 178-188.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.