KINETIC MECHANISM REDUCTION FOR METHYL FORMATE THROUGH DEPTH FIRST SEARCH AND SENSITIVITY ANALYSIS

Autores

  • F. R. R. Padilha UFRGS
  • F. C. C. Minuzzi UFRGS
  • A. L. De Bortoli UFRGS
  • J. M. Pinho UFSC

DOI:

https://doi.org/10.26512/ripe.v2i11.21273

Palavras-chave:

Biodiesel. Methyl Formate. Mechanism Reduction. Sensitivity Analysis.

Resumo

Biodiesel has been considered the most promising fuel to replace part of the fossil diesel consumed worldwide, since it is a renewable and biodegradable fuel. There is the need of reduced kinetic mechanisms for the effective numerical simulation of these fuels. In this way, the aim of this work is the development of a reduced mechanism of moderate stiffness for Methyl Formate (MF). MF is not indicated as a biodiesel surrogate due to its higher reactivity, but its study enables to isolate the role of each ester in combustion processes. So, based on a detailed mechanism consisting of 950 reactions and 176 species, Directed Relation Graph with Depth First Search and Sensitivity Analysis are employed to obtain a small mechanism with 43 reactions and 23 species for MF. This mechanism has reasonable accuracy compared to the full mechanism and decreases the computational cost for obtaining the solution of the reactive flow.

Downloads

Não há dados estatísticos.

Referências

Alim, M. A., Malalasekera, W., 2005. Transport and chemical kinetics of H2/N2 jet flame: a flamelet modelling approach with NOx prediction. Journal of Naval Architecture and Marine Engineering, vol. 1, pp. 33-40.

Apte, S., Yang, V., 2002. Unsteady flow evolution and combustion dynamics of homogeneous solid propellant in a rocket motor. Combustion and Flame, vol. 131, pp. 110-131.

Andreis, G. S. L., Vaz, F. A., De Bortoli, A. L., 2013. Bioethanol combustion based on a reduced kinetic mechanism. Journal of Mathematical Chemistry, vol. 51, pp. 1584-1598.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C., 2009. Introduction to algorithms, MIT Press.

De Bortoli, A. L., Andreis, G. S. L., & Pereira, F. N., 2015. Modeling and Simulation of Reactive Flows, Elsevier Science Publishing Co Inc.

Deminsky, M., Chorkov, V., Belov, G., et al., 2003. Chemical Workbenchintegrated environment for materials science. Computational Materials Science, vol. 28, pp. 169-178.

Di´evart, P., Won, S. H., Gong, J., Dooley, S., Ju, Y., 2013. A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction. Proceedings of the Combustion Institute, vol. 34, pp. 821-829.

Dooley, S., Curran, H. J., Simmie, & J. M., 2008. Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate. Combustion and Flame, vol. 153, pp. 2-32.

Dooley, S., Burke, M. P., Chaos, M., Stein, Y., Dryer, F. L., Zhukov, V. P., et al., 2010. Methyl formate oxidation: speciation data, laminar burning velocities, ignition delay times, and a validated chemical kinetic model. International Journal of Chemical Kinetics, vol. 42, pp. 527- 529.

Dooley, S., Dryer, F. L., Yang, B.,Wang, J., Cool, T. A., Kasper, T., et al., 2011. An experimental and kinetic modeling study of methyl formate low-pressure flames. Combustion and Flame, vol. 158, pp. 732-741.

Farooq, A., Davidson, D. F., Hanson, R. K., Huynh, L. K., Violi, A., 2009. An experimental and computational study of methyl ester decomposition pathways using shock tubes. Proceedings of the Combustion Institute, vol. 32, pp. 247-253.

Fisher, E. M., Pitz, W. J., Curran, H. J, Westbrook, C. K., 2000. Detailed chemical kinetic mechanisms for combustion of oxygenated fuels. Proceedings of the Combustions Institute, vol. 28, pp. 1579-1586.

Grana, R., Frassoldati, A., Cuoci, A., Faravelli, T., Ranzi, E., 2012. A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate. Note I: Lumped kinetic model of methyl butanoate and small methyl esters. Energy, vol. 43, pp. 124-139.

Ferziger, J. H., & Peric, M., 2002. Computational Methods for Fluid Dynamics. Springer.

Kuo, K. K., & Acharya, R., 2012. Fundamentals of Turbulent and Multi-Phase Combustion. John Wiley and Sons.

Lebedev, A., Okun, M., Chorkov, V., Tokar, P., Strelkova, M., 2012. Systematic procedure for reduction of kinetic mechanisms of complex chemical processes and its software implementation. Journal of Mathematical Chemistry, vol. 51, pp. 73-107.

Lu, T., Law, C. K., 2005. A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute, vol. 30, pp. 1333-1341.

Lu, T., Law, C. K., 2006. Linear time reduction of a large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane. Combustion and Flame, vol. 144, pp. 24-36.

Martins, J. R. R. A., 2002. A Coupled-Adjoint Method for High-Fidelity Aero-Structural Optimization. PhD thesis, Stanford University.

Niemann, U., Seiser, R., & Seshadri, K., 2010. Ignition and extinction of low molecular weight esters in nonpremixed flows. Combustion Theory and Modelling, vol. 14, pp. 875-891.

Pitsch, H., Steiner, H., 2000. Large eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Physics of Fluids, vol. 12, pp. 2541-2554.

Wang, Y. L., Veloo, P. S., Egolfopoulos, F. N., Tsotsis, T. T., 2011. A comparative study on the extinction characteristics of non-premixed dimethyl ether and ethanol flames. Proceedings of the Combustion Institute, vol. 33, pp. 1003-1010.

Westbrook, C. K., Naik, C. V., Herbinet, O., Pitz, W. J., Mehl, M., Sarathy, S. M. et al., 2011.

Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combustion and Flame, vol. 158, pp. 742-755.

Westbrook, C. K., Pitz, W. J., Westmoreland, P. R., Dryer, F.L., Chaos, M., Osswald, P., Kohse- H¨oinghaus, K., Cool, T. A., Wang, J., Yang, B., Hansen, N., Kasper, T., 2009. A detailed chemical kinetic reaction mechanism for oxidation of four small alkyl esters in laminar premixed flames. Proceedings of the Combustion Institute, vol. 32, pp. 221-228.

Downloads

Publicado

2017-01-10

Como Citar

Padilha, F. R. R., Minuzzi, F. C. C., De Bortoli, A. L., & Pinho, J. M. (2017). KINETIC MECHANISM REDUCTION FOR METHYL FORMATE THROUGH DEPTH FIRST SEARCH AND SENSITIVITY ANALYSIS. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(11), 159–171. https://doi.org/10.26512/ripe.v2i11.21273