MULTI-OBJECTIVE OPTIMIZATION OF A VEHICLE'S DYNAMIC RESPONSE TO EXCITATIONS CAUSED BY A ROAD PROFILE THROUGH A META-HEURISTIC ALGORITHM
DOI:
https://doi.org/10.26512/ripe.v2i5.21247Palavras-chave:
Multi-objective optimization, Half car ride model, Random road profile, PSD, NSGA-IIResumo
The proposed work uses a meta-heuristic algorithm with a multi-objective approach to optimize the suspension parameters of a half car ride model, representing a passenger car, when it travels at a constant speed on a certain road profile. The numerical-computational routine developed seeks to simulate the dynamic behavior of the vehicle model in response to the excitations caused by the pavement’s irregularities, and to obtain the parameters that minimize both the vertical acceleration of the driver seat and the front and rear tire deflections of the model. The ISO 8608 (1995) standard methodology is used to obtain the base excitation signals that represent the track’s irregularities. The method proposed by Shinozuka and Jan (1972) is used to obtain the road irregularity profile in the time domain from the power spectral density (PSD) equations that represent the different pavement classes. The Newmark’s method (1959) is used to solve the differential motion equation in order to obtain the vehicle model’s responses to these irregularities. Finally, the NSGA-II meta-heuristic algorithm proposed by Deb et al. (2002) is used to obtain the optimal suspension parameters, which minimize the vertical accelerations of the driver seat.
Downloads
Referências
Baumal, A. E., McPhee, J. J., & Calamai, P. H., 1998. Application of genetic algorithms to the design optimization of an active vehicle suspension system. Computer Methods in Applied Mechanics and Engineering, vol. 163, pp. 87 ”“ 94.
Corne, D. W., Jerram, N. R., Knowles, J.D., et al., 2001. PESA-II: Region-based selection in evolutionary multiobjective optimization. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), pp. 283 - 290.
Deb, K., Pratap, A., Agarwal, S., et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions, vol. 6, pp. 182-197.
Gadhvi, B., Savsani, V., & Patel, V., 2016. Multi-Objective Optimization of Vehicle Passive Suspension System using NSGA-II, SPEA2 and PESA-II. Procedia Technology, vol. 23, pp. 361”“368.
Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.
Haftka, R. T., & Gürdal, Z., 1993. Elements of Structural Optimization. Kluwer Academic Publishers.
Haug, E. J., & Arora, J. S., 1979. Applied Optimal Design: Mechanical and Structural Systems. John Wiley and Sons.
International Organization for Standardization ISO 8608, 1995. Mechanical Vibration ”“ Road Surface Profiles ”“ Reporting of Measured Data. Switzerland.
Nagarkar, M. P., Patil, G. J. V., & Patil, R. N. Z., 2016. Optimization of nonlinear quarter car suspension-seat-driver model. Journal of Advanced Research [Epub ahead of print].
Newmark, N. M., 1959. A Method of Computation for Structural Dynamics. ASCE Journal of Engineering Mechanics Division, vol. 85, n. EM3.
Shinozuka, M., & Jan, C. M., 1972. Digital Simulation of Random Process and its applications. Journal of Sound and Vibration, vol. 25, pp. 111-118.
Shojaeefard, M. H., Khalkhali, A., & Erfani, P. S., 2014. Multiobjective suspension optimization of a 5-DOF vehicle vibration model excited by random road profile. International Journal of Advanced Design and Manufacturing Technology, vol. 7, n. 1, pp. 1 - 7.
Zitzler, E., Laumanns, M., Thiele, L., et al., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-Report 103, Institut für Technische Informatik und Kommunikationsnetze (TIK), Eidgenössische Technische Hochschule Zürich (ETH).
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.