BUCKLING OF PIPELINES DUE TO INTERNAL PRESSURE
DOI:
https://doi.org/10.26512/ripe.v2i22.20867Palavras-chave:
Buckling. Effective axial force. Internal pressure. Nonlinear analysis. Pipeline.Resumo
The pipelines used to transport oil and gas tend to expand due to high temperature and pressure conditions. If this expansion is inhibited, a compressive axial force arises. The pipeline can relieve the stresses by lateral or upheaval buckling. The objective of the present work is to analyze the instability of pipelines due to internal pressure, experiencing different boundary conditions and imperfection magnitudes. It aims at discussing the equivalence between approaches that involve the application of the load as the internal pressure and as an equivalent compression with follower and non-follower characteristics, besides discussing the influence of using static or dynamic analysis for such approaches. The methodology involves the development of geometrically-simple Timoshenko beam structural models. To perform the simulations, Giraffe finite element software is used for nonlinear analysis. The study presents comparisons between critical forces and post-buckling configurations for the different boundary conditions, imperfections, load types and analysis methods considered, as well as comparisons between numerical and analytical solutions. Through the study, it is concluded that the equivalence in results between the distinct approaches depends on the nature of boundary conditions.
Downloads
Referências
Bai, Q., Bai, Y., 2014. Subsea pipeline design, analysis, and installation. Elsevier. Ballet, J. P., Hobbs, R. E., 1992. Asymmetric effects of prop imperfections on the upheaval buckling of pipelines. Thin-walled Structures, vol. 13, n. 5, pp. 355-373. Bazant, Z. P., Cedolin, L., 2010. Stability of structures: elastic, inelastic, fracture and damage theories. World Scientific Publishing Company. Cardoso, C. de O., 2005. Metodologia para análise e projeto de dutos submarinos submetidos a altas pressões e temperaturas via aplicação do método dos elementos finitos. Tese (Doutorado), Universidade Federal do Rio de Janeiro.
Dvorkin, E. N., Toscano, R. G., 2001. Effects of internal/external pressure on the global buckling of pipelines. In: First MIT Conference on Computational Fluid and Solid Mechanics, pp. 159-164. Fan, S., 2013. Upheaval buckling of offshore pipelines. Master thesis, Norwegian University of Science and Technology.
Fyrileiv, O., Coolberg, L., 2005. Influence of pressure in pipeline design: effective axial force. In: 24th International Conference on Offshore Mechanics and Arctic Engineering, pp. 1-8. Gay Neto, A., 2016. Dynamics of offshore risers using a geometrically-exact beam model with hydrodynamic loads and contact with the seabed. Engineering Structures, vol. 125, pp. 438-454. Gay Neto, A., Martins, C. de A., 2013. Structural stability of flexible lines in catenary configuration under torsion. Marine Structures, vol. 34, pp. 16-40. Gay Neto, A., Martins, C. de A., Pimenta, P. de M., 2016. Hydrostatic pressure load in pipes modeled using beam finite elements: theoretical discussions and applications. Accepted by Journal of Engineering Mechanics. Gay Neto, A., Martins, C. de A., Pimenta, P. de M., 2014. Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact. Comp Mechanics, vol. 53, pp. 125-145. Gay Neto, A., Pimenta, P. de M., Wriggers, P., 2015. Self-contact modeling on beams experiencing loop formation. Comp Mechanics, vol. 55, pp. 193-208. Hobbs, R. E., 1984. In-service buckling of heated pipelines. Journal of Transportation Engineering, vol. 110, n. 2, pp. 175-189. Isaac, O. I., 2013. Lateral buckling and axial walking of surface laid subsea pipeline. Master thesis, University of Stavanger. Liu, R., Wang, W., Yan, S., 2013. Finite element analysis on thermal upheaval buckling of submarine burial pipelines with initial imperfection. Journal of Central South University, vol. 20, n. 1, pp. 236-245. Sparks, C. P., 1984. The influence of tension, pressure and weight on pipe and riser deformations and stresses. Journal of Energy Resources Technology, vol. 106, n. 1, pp. 46-54. Taylor, N., Gan, A. B., 1986. Submarine pipeline buckling: imperfection studies. Thin-walled Structures, vol. 4, n. 4, pp. 295-323. Taylor, N., Tran, V., 1996. Experimental and theoretical studies in subsea pipeline buckling. Marine Structures, vol. 9, n. 2, pp. 211-257. Zeng, X., Duan, M., Che, X., 2014. Critical upheaval buckling forces of imperfect pipelines. Applied Ocean Research, vol. 45, pp. 33-39. Ziegler, H., 1968. Principles of structural stability. Blaisdell Publishing Company.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.