RELIABILITY ANALYSIS OF A STEEL BEAM USING THE MONTE CARLO METHOD
DOI:
https://doi.org/10.26512/ripe.v2i2.20734Palavras-chave:
Probabilistic design. I-beam. Monte Carlo Method. Structural reliability analysis.Resumo
This paper aims to show the feasibility of structural analysis in steel beams, based on the precepts of reliability. We assessed the reliability and security of a steel I-beam profile (I 254 (10”) x 37,7), MR250, subject to an applied bending moment. The purpose was to evaluate the appropriateness of the component in handling specific project stresses. First we provide a dimensioning analysis based on Brazilian structural standards and then a verification of the beam’s relative safety, in terms of the reliability index ï¢ . The adopted failure function is related to gross and net areas of the flange, submitted to traction stresses. The system’s reliability index, constituted by the failure function is also determined. Considering the statistical results, the failure rate in the structure, demonstrates that the solicited project loadings are sustained, also determining the capacity of the structure to exceed the applied load, while maintaining structural safety of the steel beam. In the reliability analysis, the use of randomized integer generation, assisted by computational resources (Mathcad), makes it feasible to infinitely test the metallic structure. The Monte Carlo method was used, based on determined probability distributions (involved variables), to obtain the probability of structural failure. The random variables used in the reliability analysis, are delineated by the Joint Committee for Structural Safety (JCSS).
Downloads
Referências
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 8.800: Design of steel structures and composite structures of steel and concrete. Rio de Janeiro, 2008. 237 p. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15.980: Rolled steel shapes for structural use - Dimensions and tolerances. Rio de Janeiro, 2011. 28 p. SHOOMAN, M. L. Probabilistic reliability: an engineering approach. McGraw-Hill (1968). PAPADRAKAKIS, M., PAPADOPOULOS, V., LAGAROS, N. D. Structural reliability analysis of elasti-plastic structures using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics Engineering, v. 136, p. 145-163, 1996. PINTO, L. H. T. Failure Analysis: Topics on Reliability Engineering. São Paulo, 2004. 65 p. PFEIL, M; PFEIL, W. Steel structures: Practical Dimensioning using NBR 8.800/2008. 8. ed. São Paulo: LTC, 2009.335 p. ECKHARDT, Roger. Stan Ulam, John von Neumann and the Monte Carlo Method. Los Alamos Science, Los Alamos, Special Edition, Vol. 15, 131-141, 1987. LEE, O. A.; KIM, D. H. Reliability of Fatigue Damaged Structure Using FORM, SORM and Fatigue Model. In: WORLD CONGRESS ON ENGINEERING, 2-4 July, 2007, London, G.B.
PROBABILISTIC MODEL CODE ”“ JOINT COMMITTEE ON STRUCTURAL SAFETY.
Disponível em: <http://www.jcss.byg.dtu.dk/Publications/Probabilistic_Model_Code.aspx>. Accessed 21st April, 2016.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, sendo o trabalho simultaneamente licenciado sob a Creative Commons Attribution License o que permite o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.