Model Predictive Control Applied to a Quadrotor UAV

Autores

  • Tiago Santana Lourenço UnB
  • André Murilo de Almeida Pinto UnB
  • Renato Vilela Lopes UnB

DOI:

https://doi.org/10.26512/ripe.v2i20.15012

Resumo

This paper describes and analyzes the performance of two different formulations of model predictive control (MPC) applied to a quadrotor unmanned aerial vehicle (UAV), one that explicitly handles constraints and another that doesn’t. The objective of the MPC strategy is to compute an optimal sequence of actions within its prediction horizon to track desired states. The optimization strategies adopted in this work are based on an approximated dynamical model for prediction while imposing a quadratic cost function. One prominent vantage of MPC is its ability to handle constraints inherent to the process, based either on actuators’ limitations or security concerns. Through simulations, the impacts of imposing a convex set of constraints is analyzed, regarding the performance and computational effort involved in solving a trajectory tracking problem.
Keywords: Optimal control, Predictive Control, Quadrotors, UAVs

Downloads

Não há dados estatísticos.

Referências

Alamir, M. (2013), A Pragmatic Story of Model Predictive Control: Self-Contained Algorithms and Case-Studies, 1st edn, CreateSpace Independent Publishing Platform, USA.

Burri, M., Nikolic, J., Hurzeler, C., Caprari, G. & Siegwart, R. (2012), Aerial service robots for visual inspection of thermal power plant boiler systems, in ‘Applied Robotics for the Power Industry (CARPI), 2012 2nd International Conference on’, IEEE, pp. 70”“75.

Faessler, M., Fontana, F., Forster, C., Mueggler, E., Pizzoli, M. & Scaramuzza, D. (2015), ‘Autonomous, vision-based flight and live dense 3d mapping with a quadrotor micro aerial vehicle’, Journal of Field Robotics .

Ferreau, H., Kirches, C., Potschka, A., Bock, H. & Diehl, M. (2014), ‘qpOASES: A parametric active-set algorithm for quadratic programming’, Mathematical Programming Computation 6(4), 327”“363.

Ferreau, H., Potschka, A. & Kirches, C. (2007”“2015), ‘qpOASES webpage’, http://www.qpOASES.org/.

Holz, D. & Behnke, S. (2016), Mapping with micro aerial vehicles by registration of sparse 3D laser scans, in ‘Intelligent Autonomous Systems 13’, Springer, pp. 1583”“1599.

Izadi, H. A., Zhang, Y. & Gordon, B. W. (2011), Fault tolerant model predictive control of quad-rotor helicopters with actuator fault estimation, in ‘Proc. 2011 Proceedings of the 18th IFAC World Congress’, pp. 6343”“6348.

Kim, J., Kang, M.-S. & Park, S. (2010), ‘Accurate modeling and robust hovering control for a quad”“rotor VTOL aircraft’, Journal of Intelligent and Robotic Systems 57(1-4), 9”“26.

Lopes, R. V., Santana, P., Borges, G. & Ishihara, J. (2011), Model predictive control applied to tracking and attitude stabilization of a vtol quadrotor aircraft, in ‘21st International Congress of Mechanical Engineering’.

Luukkonen, T. (2011), ‘Modelling and control of quadcopter’, Independent research project in applied mathematics, Espoo .

Mattingley, J. & Boyd, S. (2012), ‘Cvxgen: A code generator for embedded convex optimization’, Optimization and Engineering 13(1), 1”“27.

Powers, C., Mellinger, D. & Kumar, V. (2015), Quadrotor kinematics and dynamics, in ‘Handbook of Unmanned Aerial Vehicles’, Springer, pp. 307”“328.

Richalet, J., Rault, A., Testud, J. & Papon, J. (1978), ‘Model predictive heuristic control: Applications to industrial processes’, Automatica 14(5), 413”“428.

Santana, P. & Borges, G. (2009), ‘Modelagem e controle de quadrirrotores’, IX Simpósio Brasileiro de Automaçao Inteligente (SBAI 2009) 9, 1”“6.

Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., Achtelik, M. W., Chli, M., Chatzichristofis, S. A., Kneip, L. et al. (2014), ‘Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPSdenied environments’, Robotics & Automation Magazine, IEEE 21(3), 26”“40.

Wang, Y. & Boyd, S. (2010), ‘Fast model predictive control using online optimization’, Control Systems Technology, IEEE Transactions on 18(2), 267”“278.

Zulu, A., John, S. et al. (2014), ‘A review of control algorithms for autonomous quadrotors’, Open Journal of Applied Sciences 4(14), 547. CILAMCE

Downloads

Publicado

2017-02-08

Como Citar

Lourenço, T. S., Pinto, A. M. de A., & Lopes, R. V. (2017). Model Predictive Control Applied to a Quadrotor UAV. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(20), 164–178. https://doi.org/10.26512/ripe.v2i20.15012