• Jhonathan Murcia Piñeros INPE
  • Maxime Koffi INPE
  • Helio Koiti Kuga ITA/INPE



A satellite orbit is mainly influenced by central body gravitational forces. For a
satellite in LEO (Low Earth Orbit), MEO (Medium Earth Orbit) or GEO (Geosynchronous Earth Orbit) the Earth´s gravity distribution and other perturbations determine the position and velocity changes in function of time. If the motion is around a spherical body with homogenous mass distribution and without perturbative forces, the orbit must be cyclic like the Two Body Problem (TBP) or Keplerian Orbit. Different numerical methods can be applied for solving the Ordinary Differential Equations (ODE´s). In this work a fourth-order
fixed step-size Runge-Kutta numerical integrator (RK4) was implemented. With satellite´s position and velocity in inertial reference frame at zero time (orbit initial conditions) and solving the ODE´s with RK4 it is possible to know the satellite position and velocity at any time, with a certain level of accuracy. When the integration time is equal to the orbit period time, in a Keplerian orbit, the initial and final orbit data are compared to obtain the integration error in position and velocity. To better accuracy it is recommended to change the
ODE´s from a Newtonian system by a time transformation to a stable Liapunov system and finally to Kunstaanheimo-Stiefel (KS) transformed system. In this paper the results obtained by applying the KS transformation to the orbit ODE´s, its accuracy and error analysis for different step-sizes of integration in a satellite orbit propagation are presented. Additionally, the orbits propagated are compared in terms of performance, CPU time and degradation of accuracy. Finally conclusions are drawn showing the beneficial aspects of using the KS transformation as an efficient technique for precise orbit integration of Earth satellites. 

Keywords: Satellite Orbit, Numerical Integration, Time Transformation, KS transformation.


Não há dados estatísticos.


Bate, R., Mueller, D., White, J., 1971. Fundamentals of Astrodynamics. Dover Publications.

Berry, M., Healy, L., 2002. The Generalized Sundman Transformation for Propagation of High-Eccentricity Elliptical Orbits. AAS/AIAA Space Flight Mechanics Meeting, January 37-30, pp. 1-20.

Bond, V., 1974. The Uniform, Regular Differential Equation of the KS Transformed Perturbed Two-Body Problem. AAS/AIAA Astrodynamics Specialist Conference Celestial Mechanics, vol. 10, pp. 303-318.

Neto, A., 1974. An Estimation Procedure for Orbit Determination, Using the KS Transformation. Proceedings 12th COSPAR Plenary Meeting Satellite Dynamics Symposium São Paulo/Brazil, June 19-21, pp. 27-34.

Pellegrini, E., Russell, P., Vittaldev, V., 2013. F and G Taylor Series Solution to the Stark Problem with Sundman Transformations. 2013 AAS/AIAA Astrodynamics Specialist Conference, August 11-15, pp. 1-20.

Portilla, J., 1996. Integración Analitica de las Ecuaciones de Movimiento de un Satelite Perturbado por los Armonicos Sectoriales J22 y K22 en Terminos de la Transformación KS. Revista Academia Colombiana de Ciencias, vol. 20, n. 76, pp. 15-23.

Sharaf, M., Selim, H., 2013. Final State Predictions for J2 Gravity Perturbed Motion of the Eart´s Artificial Satellites Using Bispherical Coordinates. NRIAG Journal of Astronomy and Geophysics, vol. 2, pp. 134-138.

Stiefel, E., Scheifele, G., 1971. Linear and Regular Celestial Mechanics. Springer-Verlag Berlin Heidelberg.

Yam, C., Izzo, D., Biscani, F., 2010. Towards a High Fidelity Direct Transcription Method for Optimisation of Low-Thrust Trajectories, 4th International Conference on Astrodynamics Tools and Techniques, pp. 1-7.




Como Citar

Piñeros, J. M., Koffi, M., & Kuga, H. K. (2017). NUMERICAL INTEGRATION OF A SATELLITE ORBIT WITH KS TRANSFORMATION. Revista Interdisciplinar De Pesquisa Em Engenharia, 2(20), 01–08.