

Article Otimização Paramétrica de Modelo Linear de ¼ Veículo Excitada pelo Perfil de Pista Aleatório da ISO 8608:2016

Gomes, P. C. ^{1,4}, Morais, M. V.G. ^{1,3*}, Teixeira, E. L. S.

- ¹ Departamento de Engenharia Mecânica, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF
- ² Faculdade do Gama, Universidade de Brasília, Campus Gama, Setor Leste, 72.444-240, Gama, DF
- ³ PPG Integridade de Materiais de Engenharia, Universidade de Brasília, Campus Gama, Setor Leste, 72444-240, Gama, DF
- ⁴ PPG Sistemas Mecatrônicos, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF
- * Correspondence: mvmorais@unb.br

Received: 01/05/2023; Accepted: 08/09/2023; Published: 08/09/2023

Abstract: O presente trabalho tem por objetivo determinar os parâmetros ótimos de massa, rigidez e amortecimento para um modelo linear dinâmico de suspensão veicular para ¼ de veículo. Realizou-se adimensionalização do modelo dinâmico de suspensão veicular de ¼ de veículo e a partir dos parâmetros adimensionais razão de massa, razão de rigidez, e razão de amortecimento definiu-se os parâmetros dimensionais da suspensão. O modelo dinâmico de ¼ de veículo é excitado pelo perfil de pista aleatório normatizado (ISO 8608:2016). Por uma técnica de mapa de resposta, mapeou-se os critérios de conforto J_1 e de roadhold J_2 para as combinações das razões adimensionais acima que resultaram na otimização dos critérios. As configurações ótimas obtidas são avaliadas pelo limite de exposição para nível de eficiência reduzida (ISO 2631:1978).

Keywords: Otimização Paramétrica; Mapa de Resposta; Vibração Aleatória, ¼ de Veículo, Conforto/Dirigibilidade.

1. Introdução

O sistema de suspensão veicular é importante para proporcionar maior conforto ao dirigir e segurança aos passageiros [1, 2]. O modelo de ¼ de veículo é um sistema dinâmico simplificado que permite analisar o comportamento da dinâmica vertical de uma suspensão veicular. Sobre a dinâmica vertical de veículos, esses apresentam basicamente duas métricas conflitantes de conforto e dirigibilidade [1–3]. O processo de otimização dos parâmetros dinâmicos de massa, rigidez e amortecimento de uma suspensão veicular passa a ser um problema complexo de otimização paramétrica multiobjetivo, sem uma solução única.

Tamboli Joshi [4] apresentam uma formalização teórica para otimização de sistemas de suspensão passiva de um veículo sujeito a excitação de pista aleatória no domínio da frequência. Os autores apresentam as métricas necessárias para o desenvolvimento do presente trabalho. Este procedimento espectral possibilita solução em tempos razoáveis para procedimentos de otimização para sistemas veiculares mais complexos. Barbosa [5] apresenta um estudo semelhante por análise espectral com resultados de perfil de pista obtidos experimentalmente de rodovia nacional. Shirahati *et al* [6] avaliam o conforto do passageiro em sistema de suspensão veicular completo passivo e ativo para excitação de pista senoidal.

As análises de otimização multiobjetivo são necessárias para descrever o presente problema de *trade-off* em sistemas de suspensão. Nadué e Snyman [7, 8] apresentam um estudo completo de otimização de suspensão veicular passiva de veículo militar com validação experimental. Puneet Hegale e Kumar [9] apresentam uma metodologia de análise de suspensão de ¼ de veículo fazendo uso de algoritmo genético multiobjetivo para minimizar uma função objetivo descrita por regressão descrita por ferramentas de design de objetivos.

As análises não-lineares do comportamento veicular e sua influência na escolha conflitante de conforto e dirigibilidade vem sendo analisados por diversos pesquisadores. Kayyan e Padmanabhan [10] descrevem o

comportamento de um amortecedor não-linear para melhorar o conforto de uma suspensão veicular. Uma descrição é apresentada sobre projeto e comportamento desejado de amortecedores veiculares. Zhou *et al* [11] apresenta o comportamento de enrijecimento de suspensão e sua influência na dinâmica veicular. Dharankar *et al* [12] avaliam a influência de amortecedores dependentes da posição para a melhoria da performance de conforto em comparação a amortecedores lineares. Paliwal *et al* [13] apresentam uma análise do comportamento não linear de uma suspensão veicular tendo como base o comportamento dos harmônicos de resposta. Dobriyal Paliwal & Kumar [14] descrevem o comportamento da dinâmica veicular de uma suspensão de ¼ de veículo, considerando o comportamento não linea de um amortecedor do tipo lei de potência, excitado por um perfil aleatório gaussiano. Dobriyal Paliwal & Kumar [15] descrevem o procedimento de otimização meta-heurística por algoritmo genético para reduzir a aceleração da massa suspensa. Essas considerações levaram a observação de uma forte dependência do conforto a índice da lei de potência.

O presente trabalho tem por objetivo determinar os parâmetros ótimos de massa, rigidez e amortecimento para um modelo linear dinâmico de suspensão veicular para ¼ de veículo. Realizou-se adimensionalização do modelo dinâmico de suspensão veicular de ¼ de veículo e, a partir dos parâmetros adimensionais razão de massa, razão de rigidez, e razão de amortecimento, definiu-se os parâmetros dimensionais da suspensão. O modelo dinâmico de ¼ de veículo é excitado pelo perfil de pista aleatório normatizado (ISO 8608:2016). Por uma técnica de mapa de resposta (otimização paramétrica por mapa de resposta) [16], mapeou-se os critérios de conforto J_1 e de *roadhold* J_2 para as combinações das razões adimensionais acima resultando na otimização dos respectivos critérios. As configurações ótimas obtidas são avaliadas pelo limite de exposição para nível de eficiência reduzida (ISO 2631:1978). Apresenta-se também os resultados de desempenho de um veículo SAE-Baja da Equipe Piratas do Cerrado a partir da escolha dos parâmetros de suspensão.

O presente trabalho é organizado em seis seções. A **seção 2** apresenta o modelo linear de ¼ de veículo. Posteriormente, realizou-se a análise adimensional e definiu-se os parâmetros adimensionais do ¼ de veículo necessários para o processo de otimização. A **seção 3** descreve o processo de otimização por mapa de resposta. Descreve-se os fundamentos de vibração aleatória, análise espectral, e a função de perfil de pista. A **seção 4** apresenta as acelerações admissíveis para determinar o tempo de exposição para nível reduzido de eficiência conforme a ISO 2631:1978. Na **seção 5**, aplica-se metodologia de otimização paramétrica para avaliar desempenho do veículo SAE-Baja da Equipe Piratas do Cerrado.

2. Modelo Linear de ¼ de Veículo

Apresenta-se o equacionamento de modelo linear dinâmico ¼ de veículo com um *inerter* em paralelo, e as funções de transferência de transmissibilidade e *roadhold* (Gillespie, 1992) utilizando a técnica de matriz de impedância. Para aplicar a técnica de otimização por mapa de resposta (seção 3), as equações fundamentais são adimensionalizadas para a reduzir o número de parâmetros de otimização Figura 1000). A escolha dessa configuração se deve por sua fácil adaptação a um veículo real.

Figura 1. Modelo dinâmico de ¼ de veículo com inerter em paralelo.

Ao analisar o modelo dinâmico, descrito na Figura 1, podemos escrever em forma matricial suas equações do movimento da seguinte forma:

$$M\ddot{z} + C\dot{z} + Kz = f(t) \tag{1}$$

Em que z é o vetor deslocamento, \dot{z} é o vetor velocidade e \ddot{z} , é o vetor aceleração e f(t) é o vetor forçamento. Além disso, M, C e K são as matrizes da massa, do amortecimento e da rigidez respectivamente. Detalhando os termos da equação (1), tem-se:

$$\begin{bmatrix} m_s & 0\\ 0 & m_u \end{bmatrix} \begin{bmatrix} \ddot{z}_s\\ \ddot{z}_u \end{bmatrix} + \begin{bmatrix} c_s & -c_s\\ -c_s & c_s \end{bmatrix} \begin{bmatrix} \dot{z}_s\\ \dot{z}_u \end{bmatrix} + \begin{bmatrix} k_s & -k_s\\ -k_s & k_s + k_t \end{bmatrix} \begin{bmatrix} z_s\\ z_u \end{bmatrix} = \begin{cases} 0\\ z_r k_t \end{cases}$$
(2)

Assumindo uma excitação $f(t) = f(\omega) e^{i\omega t}$, a solução para o estado estável é descrita por:

$$K_d z(\omega) = f(\omega) \tag{3}$$

sendo a rigidez dinâmica $K_d = K + i\omega C - \omega^2 M$, o vetor de deslocamento $\mathbf{z}(t) = [z_s(t) \quad z_u(t)]^T = \mathbf{z}(\omega)e^{i\omega t}$ é função do estado estável do vetor deslocamento $\mathbf{z}(\omega) = K_d^{-1} F(\omega)$ e a força dinâmica $\mathbf{f}(t) = [0 \quad z_u k_t]^T = \mathbf{f}(\omega)e^{i\omega t}$ é função do estado estável da força $\mathbf{f}(\omega) = [0 \quad Z_r(\omega)k_t]^T e^{i\omega t}$, correspondendo a uma excitação com 1 grau de liberdade.

Obtêm-se a resposta em frequência do vetor deslocamento $\mathbf{z}(\omega)$ como sendo:

$$\mathbf{z}(\omega) = \begin{bmatrix} H_{SS} & H_{ST} \\ H_{TS} & H_{TT} \end{bmatrix} \mathbf{f}(\omega) = \mathbf{K}_d^{-1} \mathbf{f}(\omega)$$
(4)

Tendo e resposta em frequência para as massas suspensas $Z_s(\omega)$ e não-suspensa $Z_u(\omega)$:

$$Z_{s}(\omega) = H_{ST}(\omega) Z_{r} k_{t}$$
(5)

$$Z_u(\omega) = H_{TT}(\omega) Z_r k_t$$
(6)

A resposta em frequência para o deslocamento da massa suspensa, também denominado de transmissibilidade, H_{ST} é descrito pela equação (5). Porém, para a análise de conforto em veículos, o deslocamento não é um fator tão crucial quanto a aceleração. Contudo, para obter a resposta em frequência para a aceleração, deve-se multiplicar o denominador e o numerador pela frequência de excitação. Dessa forma, conclui-se que a e resposta em frequência para o deslocamento e aceleração são as mesmas, conforme descrito na equação 7.

$$\frac{\ddot{Z}}{\ddot{Z}_r} = H_{ST}(\omega) = \frac{K_1 K_2 + j[K_1 C\omega] - K_1 \beta \omega^2}{det(K_d)}$$
(7)

Em que razão de massa $\chi = m_u/m_s$, frequências naturais da massa não-suspensa $K_1 = \omega_u^2 \chi = k_u/m_s$ ($\omega_u^2 = k_u/m_u$) e da massa suspensa $K_2 = k_s/m_s$ ($\omega_s^2 = k_s/m_s$), coeficiente de amortecimento $C = c_s/m_s$ ($2\xi_s\omega_s = c_s/m_s$), e o determinante da matriz de impedância $\det(\mathbf{K}_d) = [\chi\omega^4 - (K_2 + K_1 + K_1\chi)\omega^2 + K_1K_2] + j[K_1C\omega - \omega^3C(1 + \chi)].$

A resposta em frequência de *roadhold* corresponde a análise da variação da força normal nos pneus em função da frequência. Esta pode ser calculada a partir do deslocamento relativo da massa não suspensa com a pista $Z_u - Z_r$:

$$\frac{Z_u - Z_r}{Z_r} = H_{ST}(\omega) - 1 \tag{8}$$

Para a análise da resposta em frequência¹, utilizou-se as funções de transmissibilidade (7) e de *road hold* (8), ambas obtidas a partir das equações (4) a (6), submetidos a um forçamento harmônico constante. Dessa forma, estuda-se o comportamento com e sem inerter (b = 0).

2.2. Análise Adimensional

A adimensionalização da equação de movimento (2) foi realizada para possibilitar a escolha dos parâmetros ótimos do modelo linear ¼ de veículo com menos parâmetros de variação. Desta forma, a equação de movimento adimensional pode ser obtida como sendo:

$$\begin{bmatrix} 1 & 0 \\ 0 & \chi \end{bmatrix} \begin{bmatrix} \ddot{z}_s \\ \ddot{z}_u \end{bmatrix} + 2\xi \omega_s \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \dot{z}_s \\ \dot{z}_u \end{bmatrix} + \omega_s^2 \begin{bmatrix} 1 & -1 \\ 1 & (1+\gamma) \end{bmatrix} \begin{bmatrix} z_s \\ z_u \end{bmatrix} = \omega_s^2 \begin{bmatrix} 0 \\ z_r \gamma \end{bmatrix}$$
(9)

¹ A partir da relação $\omega = 2\pi f$ é possível obter-se a função de transferência em Hz

Em que a razão de inertância $\beta = b/m_s$, a razão de massa $\chi = m_u/m_s$, e a razão de rigidez $\gamma = k_u/k_s$.

Assumindo uma excitação $f(t) = \omega_s^2 [0 \quad z_r \gamma]^T = f(\omega) e^{i\omega t} = \omega_s^2 [0 \quad Z_r(\omega)k_t]^T e^{i\omega t}$ e uma solução particular harmônica $z(t) = [z_s(t) \quad z_u(t)]^T = z(\omega)e^{i\omega t} = [Z_s(\omega) \quad Z_u(\omega)]^T e^{i\omega t}$, a equação de movimento em frequência é dada por $K_d z(\omega) = f(\omega)$, conforme equação (3), sendo a rigidez dinâmica $K_d = K + i\omega C - \omega^2 M$. Logo, a equação de movimento adimensional pode ser escrita da seguinte forma:

$$\left(\omega_s^2 \begin{bmatrix} 1 & -1 \\ 1 & (1+\gamma) \end{bmatrix} + \iota \omega \ 2\xi \omega_s \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \omega^2 \begin{bmatrix} 1 & 0 \\ 0 & \chi \end{bmatrix} \right) \begin{cases} Z_s \\ Z_u \end{cases} = \omega_s^2 \begin{cases} 0 \\ Z_r \gamma \end{cases}$$
(10)

Tomando a razão de frequência r como sendo a razão de frequência de excitação ω pela frequência natural ω_s e substituindo na Eq. (10), tem-se:

$$\left\{ r^{2} \begin{bmatrix} 1 & -1 \\ 1 & (1+\gamma) \end{bmatrix} + 2\xi r_{u} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \begin{bmatrix} \beta+1 & -\beta \\ -\beta & \beta+\chi \end{bmatrix} \right\} \begin{bmatrix} Z_{s} \\ Z_{u} \end{bmatrix} = r^{2} \begin{bmatrix} 0 \\ Z_{r} \gamma \end{bmatrix}$$
(11)

Os parâmetros adimensionais utilizados são Y é a razão da rigidez do pneu e do amortecedor, χ é a razão entre as massas da suspensão e a não suspensa, β é a razão da entre o *inerter* e a massa suspensa e *r* é a razão da frequência de excitação pela frequência natural.

3. Otimização via mapa de resposta

O bom desempenho de uma suspensão veicular depende da combinação das diferentes variáveis que a compõe. Dois dos principais objetivos de uma suspensão veicular consiste em garantir o conforto para o piloto e o contato do pneu com o solo sendo ambos os objetivos conflitantes. A fim de entendermos este complexo problema de otimização, uma avaliação mono-objetivo é realizada para otimização de cada um dos parâmetros separadamente através da técnica de mapa de resposta.

A otimização paramétrica efetua uma varredura das variáveis adimensionais de razão de rigidez (γ) e razão de massa (χ) para uma dada razão de frequência (r). Este processo exaustivo culmina em um mapa de resposta para o conforto e outro para *road hold*. A partir do mapa de resposta é possível realizar uma análise de *trade-off* para buscar a combinação mais eficaz o projeto de uma suspensão veicular.

3.1. Fundamentos de vibração aleatória e análise espectral

Inman [17] define a diferença entre um forçamento determinístico e aleatório. Um **forçamento determinístico** no tempo diz respeito a um evento completamente compreendido para um instante t qualquer. Por outro lado, um forçamento aleatório ocorre quando dado um tempo t não é suficiente para determinar ele pois não há um padrão óbvio.

Vibrações aleatórias são classificadas e manipuladas através de ferramentas estatísticas. Para estabelecer a fundamentação matemática na caracterização de vibrações aleatórias, utilizou-se o resumo apresentado nos trabalhos de Alkmin [18] e Martins [19]. Estes trabalhos são baseados em literatura especializada [20].

As funções de correlação e autocorrelação são utilizadas para um sistema de vibração aleatória, pois são baseadas em fundamentos estatísticos de probabilidade. Para uma função de processo aleatória x(t) com período T e função probabilidade p(t), pode-se definir a esperança E[x] como sendo:

$$E[x] = \int_0^T x(t) \frac{dt}{T} = \int_{-\infty}^{+\infty} xp(t) dx$$
(12)

Assim, para determinada densidade de probabilidade p(t), obtém-se a média do processo aleatório. A partir da média é possível definir a média quadrada $E[x^2]$ e a variância ($\sigma^2 = E[x^2] - E[x]^2$). A média quadrada permite a comparação de duas funções iguais ou distintas em intervalos de tempo diferentes, o que é a base para a correlação e autocorrelação.

Em um processo aleatório a função de autocorrelação é definida como o produto $x(t)x(t + \tau)$, onde τ representa diferentes intervalos de tempo. Em um processo estacionário o valor esperado (E[...]) não dependo do tempo t, portanto pode ser denominado como $R_{xx}(\tau)$.

$$R_{xx}(\tau) = E[(t)x(t+\tau)]$$
(13)

Como um processo aleatório não apresenta periodicidade do seu sinal, não é possível expressá-lo por meio de uma série de Fourier. Já a função de densidade espectral de potência de um processo estacionário aleatório permanece invariante ao tempo (processo estacionário ergódigo). Logo, utiliza-se a função de autocorrelação $R_{xx}(\tau)$, pois essa fornece informações sobre a frequência em um processo aleatório. Na análise de correlação se obtêm as frequências de uma amostra aleatória. A transformada de Fourier de uma autocorrelação é definida por:

$$S_{xx}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} R_{xx}(\tau) e^{i\omega t} d\tau$$
(14)

A transformada de Fourier da autocorrelação $S_{xx}(\omega)$, também conhecido como densidade espectral do processo x(t) (do inglês: *power spectral density*). A densidade espectral $S_{xx}(\omega)$ é a transposição da função de autocorrelação para o domínio da frequência.

Já a transformada inversa é dada pela expressão:

$$R_{xx}(\tau) = \int_{-\infty}^{+\infty} S_{xx}(\omega) e^{i\omega t} d\omega$$
(15)

Uma consequência direta da definição (15) é:

$$E(x^2) = \int_{-\infty}^{+\infty} S_{xx}(\omega) \, d\omega \tag{16}$$

dado que $E(x^2) = R_{xx}(\tau = 0)$. No caso o valor esperado de E(x) = 0, a variância σ^2 de um processo aleatório x(t) pode ser determinada, no domínio da frequência, pela **área sobre a densidade espectral**.

Para definir o modelo matemático do sistema dinâmico linear determinístico [19–21], considera-se inicialmente x(t) e y(t) como as variáveis de excitação (entrada) e de resposta (saída) de um sistema dinâmico, respectivamente. A resposta do sistema dinâmico obtida pela função de convolução entre a excitação x(t) e a função de resposta ao impulso h(t - v). Após, algumas considerações sobre os limites de integração [17], a resposta y(t) assume a seguinte forma:

$$y(t) = \int_{0}^{+\infty} h(v)x(t-v)dv$$
(17)

Para o caso em que x(t) e y(t) correspondem a vibrações aleatórias é necessário considerar a teoria probabilística. A correlação de saída relaciona com a correlação de entrada é descrita abaixo.

$$R_{yy}(t_1, t_2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(t_1 - v_1) R_{xx}(v_1, v_2) h^T(t_2 - v_2) dv_1 dv_2$$
(18)

onde as variáveis $v_{1,}$ e v_2 podem ser interpretadas como um atraso no tempo. Caso x(t) seja estacionário, $R_{xx}(t_1, t_2)$ dependerá apenas da diferença entre $\tau = t_2 - t_1$, de modo que $R_{yy}(t_1, t_2)$ também será apenas dependente de τ . Reescrevendo a equação (17) substituindo as variáveis, tem-se que:

$$R_{yy}(\tau) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(v_1) R_{xx}(\tau + v_1 - v_2) h^T(v) dv_1 dv_2$$
(19)

A solução da transformada de Fourier apresentada na equação (18) é aplicada considerando os conceitos de PSD, onde $\int_{-\infty}^{+\infty} e^{i\omega t} R_{xx}(\tau + v_1 - v_2) d\tau = 2\pi S_{xx}(\omega) e^{i\omega(v_1 - v_2)}$. Pela definição da função impulso têm-se:

$$S_{yy} = H^*(\omega)H(\omega)S_{xx}(\omega)$$
(2021)

onde H^* é o conjugado da função de transferência.

Sendo que o produto de um número complexo por seu conjugado é igual a sua magnitude ao quadrado, resultando em:

$$S_{yy} = |H(\omega)|^2 S_{xx}(\omega)$$
(22)

A partir da equação (2021) temos que a variância para uma entrada simples é calculada como:

$$\sigma^{2} = \int_{0}^{+\infty} |H(\omega)|^{2} S_{xx}(\omega) \, d\omega \tag{2324}$$

estabelecendo uma relação entre a entrada e a saída do PSD.

3.2 Densidade Espectral de Potência (PSD) de Pista

A análise das excitações da pista segundo Wong (2001) iniciou-se com a utilização de sinais senoidais, funções degrau ou ondas triangulares, porém descobriu-se que os perfis de pista são descritos melhor por vibrações aleatórias.

Como já foi dito anteriormente, para as análises de vibrações aleatórias são utilizadas ferramentas estatísticas a fim de se obter o PSD e as respostas na frequência, uma vez que não é possível determina o forçamento a partir do tempo. A norma ISO 8608 [22] estabelece a forma que os PSD de pista devem ser utilizados para simulações. A **Figura 2** apresenta o PSD de deslocamento devido excitação da pista.

Figura 2. Classificação da rugosidade da pista pela ISO [22]

A classificação são subdividas em letras, Wong (2001) descreve que a classificação A se refere a uma pista com boa qualidade E como ruim.

A norma ISO 8608 [22] apresenta o modelo matemático para a utilização dos PSD de pista nas simulações. Inicialmente, relaciona-se a velocidade v do veículo com a frequência espacial n e a frequência f dada por:

$$n = \frac{\omega}{2\pi v} = \frac{f}{v}$$
(25)

Em que v está em metros por segundo, n^2 é o inverso do comprimento de onda e está em ciclos por metro e f está em ciclos por segundo (Hz). O PSD do deslocamento gerado pela pista é descrito a partir da equação (26) apresentada a seguir:

$$G_d(n) = G_d(n_0) \left(\frac{n}{n_0}\right)^{-w}$$
(26)

Em que as constantes a seguir são definidas pela norma, sendo w igual a -2, n_0 é a frequência espacial referencial e é igual a 0,1 (ciclos/m) e $G_d(n_0)$ define a categoria do PSD de pista utilizado, as categorias e os valores são apresentadas na Tabela 1.

² A partir da relação $\Omega = 2\pi n$ é possível converter a frequência espacial angular em frequência espacial

Deed dees	Degree of roughness							
Road class	Lower limit Geometric mean Upper limit			Geometric mean				
	Spatial frequency units, n							
		$G_{\rm v}(n)$						
		10 ⁻⁶ m						
А	_	16	32	6,3				
В	32	64	128	25,3				
С	128	256	512	101,1				
D	512	1 024	2 048	404,3				
Е	2 048	4 094	8 192	1 617				
F	8 192	16 384	32 768	6 468				
G	32 768	65 536	131 072	25 873				
Н	131 072	262 144	—	103 490				

Tabela 1. Classificação das pistas [22]

Para se obter o PSD da aceleração gerada pela pista, multiplica-se a Eq. (26) por $(2n\pi)^4$, resultando em:

$$G_a(n) = (2n\pi)^4 G_d(n)$$
(27)

Dessa forma, a partir da equação (25) é possível determinar o forçamento exercido pela pista em uma faixa de frequências temporal. Considerando que em cada simulação, a velocidade do veículo será constante e substituindo a Eq. (25) e (26) na Eq. (27) tem-se:

$$G_{a}(f) = \left(\frac{\omega}{\nu}\right)^{4} G_{d}(n_{0}) \left(\frac{\omega}{2\pi n_{0}\nu}\right)^{-w} = \left(\frac{2\pi f}{\nu}\right)^{4} G_{d}(n_{0}) \left(\frac{f}{n_{0}\nu}\right)^{-w}$$
(28)

Substituindo o $G_a(f)$ na Eq. (22) é possível obter a saída do sistema a partir de uma excitação de pista:

$$S_{vv} = |H(f)|^2 G_a(f)$$
(29)

3.3. Mapa de resposta

A técnica escolhida para realizar a análise foi uma otimização paramétrica do tipo mapa de resposta. Essa técnica consiste em realizar uma varredura dos parâmetros de razão de massa (χ) e razão de rigidez (γ) para um dado um faixa fixa de razão de frequência (r), resultando em um mapa de resposta. A razão de amortecimento (ξ) também foi avaliado, contudo, devido afetar principalmente o ponto máximo da função de transferência, realizou-se uma varredura do ξ para cada combinação de (χ , γ) de modo a conseguir o ponto mínimo possível.

Para a construção do mapa de resposta visando melhorar o conforto, utilizou-se a Eq. (29), de modo a conseguir o valor de amplitude RMS para uma dada combinação dos parâmetros (χ, γ, ξ) . Utilizou-se como excitação um ruído branco unitário $(S_{xx}(\omega) = 1)$, visto que o PSD de pista é diretamente relacionado com a frequência de excitação. A partir da Eq. (28) é possível perceber que o PSD da aceleração da pista cresce exponencialmente com o aumento da frequência, dessa forma, o deslocamento da frequência natural impacta drasticamente o RMS da massa suspensa, por isso, a razão de frequência não é aplicável nessa situação, uma vez que ela distorce esse fato.

Substituindo na eq (29) o ruído branco $S_{xx}(\omega) = 1$ e a partir da Eq. (7) tem-se que a função de transferência da aceleração da massa suspensa devido a excitação da pista, de modo que $H(\omega) = H_{ST}(\omega)$:

$$\sigma_s^2 = \int_0^{+\infty} |H_{ST}(\omega)|^2 \, d\omega$$
 (30)

Logo, o critério de minimização de vibração da massa móvel $J_1(\chi, \gamma, \xi)$ é dado por:

$$J_1(\chi, \gamma, \xi) = \min(\sigma_s^2) \tag{31}$$

De maneira análoga, construiu-se um mapa de resposta visando o contato do pneu -solo (*road hold*), porém, como parâmetro de otimização, buscou-se o menor ponto máximo da função de transferência apresentada. Visto que se deseja obter a menor variação da força normal, dessa forma os parâmetros (χ, γ, ξ) escolhidos devem diminuir a amplificação máxima do sistema.

Dessa forma, calculou-se o módulo da Eq. (8) de forma obter-se a função de transferência e buscou-se obter o valor máximo dela:

$$J_2(\chi,\gamma,\xi) = \min\left(\max\left|\frac{Z_u - Z_r}{Z_r}\right|\right)$$
(32)

O diagrama pseudocódigo apresentado na Figura 3 apresenta o processo de construção do mapa de resposta visando o conforto.

Figura 3. Pseudocódigo do programa de mapa de resposta

O mapa de resposta visando o roadhold teve processo análogo apresentado na Figura 3.

4. Acelerações Admissíveis para Conforto (ISO 2631)

Associado ao PSD de pista, utilizou-se a norma ISO 2631 (1978) que define quatro fatores físicos de importância primordial que devem ser avaliados para determinar a resposta humana a vibração: Intensidade; Frequência; Direção; Duração (tempo de exposição a vibração). E três níveis possíveis para avaliar a exposição, sendo eles: Conforto reduzido; Eficiência reduzida; Limite de exposição (risco a saúde e segurança).

As análises do limite de exposição foram realizadas apenas no eixo longitudinal devido a excitação da pista e a resposta do sistema ser limitada a esse eixo. A Figura 4 exibe os limites de eficiência reduzida para vibrações verticais em função da frequência de excitação.

Figura 4. Limite de aceleração longitudinal como função da frequência e tempo de exposição para nível reduzido de eficiência (fadiga). (ISO 2631, 1978)

As frequências analisadas pela norma estão distribuídas bandas de frequência de 1/3 de oitava Hz, para efetuar o cálculo do valor RMS para essa banda de frequência, utilizou-se o método apresentado por Wong (2001), que consiste em calcular o valor RMS para a uma frequência central (f_c):

$$\sigma_{a,s}(f_c) = \left[\int_{0.89f_c}^{1,12f_c} S_{yy}(f) \, df \right]^{1/2}$$
(33)

Em que $S_{yy}(f)$ é a aceleração PSD do veículo. A partir da raiz quadrada da aceleração do veículo nas frequências centrais e intervalo de interesse, para o caso da norma ISO 2631 as frequências centrais de interesse e os limites de exposição são apresentados na **Tabela 3** – Anexo I, os valores apresentados são para o nível de eficiência reduzida. Porém, segundo a norma, para obter os limites de exposição basta multiplicar os valores de aceleração por 2 e para o nível de conforto reduzido basta dividir por 3,15.

5. Otimização Paramétrica de Modelo de ¼ Veículo

Esta seção tem como objetivo apresentar (i) a otimização dos parâmetros de rigidez, massa e amortecimento de um modelo clássico ¼ de veículo (b = 0), e (ii) a otimização paramétrica do modelo ¼ de veículo com inerter b em paralelo, conforme modelo matemático (11). Apresenta-se a construção do mapa de resposta para as métricas de otimização de conforto J_1 e de dirigibilidade J_2 . Os mapas de respostas produzidos avaliam os parâmetros ótimos do veículo SAE-Baja versão 2021 da equipe Piratas do Cerrado (UnB - FT), cujos parâmetros adimensionais são $\chi = 0,3$, $\gamma = 37$, e $\xi = 0,15$. As análises buscam propor modificações para melhorar o desempenho desse veículo.

O mapa de resposta de conforto $J_1(\chi, \gamma, \xi_{opt}) = \min(\sigma_s^2)$ (Figura 5), conforme Eq. (31), apresenta a resposta dinâmica da massa suspensa σ_s^2 do modelo clássico ¼ de veículo (b = 0) para o intervalo dos parâmetros adimensionais de razão de massa $\chi \in [0.05; 0.5]$ e de razão de rigidez $\gamma \in [5; 100]$. Além disso, variou-se a razão de amortecimento $\xi \in [0.05; 0.5]$. A

Figura **6** apresenta o mapa de resposta de *roadhold* $J_2(\chi, \gamma, \xi_{opt}) = \min(\max|(Z_u - Z_r)/Z_r|)$, conforme Eq.(32), para o mesmo intervalo dos parâmetros adimensionais de razão de massa χ e de razão de rigidez γ . Visto que segundo

[1] as razões de amortecimento admissíveis ξ são [0.2; 0.40] para os caso em que os mapas de resposta forneceram razões de amortecimentos fora desse intervalo, foram substituídos pelo valor admissível mais próximo.

Figura 5. Mapa de resposta do critério de conforto $J_1(\chi, \gamma, \xi)$: (a) aceleração-rms da massa suspensa $\sigma_s^2(\chi, \gamma, \xi_{opt})$, (b) razão de amortecimento ξ_{opt} em função das razões de massa χ e de rigidez γ .

Figura 6. Mapa de resposta do critério de roadhold $J_2(\chi, \gamma, \xi)$: (a) aceleração-rms da massa suspensa $\sigma_s^2(\chi, \gamma, \xi_{opt})$, (b) razão de amortecimento ξ_{opt} em função das razões de massa χ e de rigidez γ .

A partir dos mapas de resposta, constatou-se um conflito de escolha (*trade-off*), uma vez que a otimização de J_1 para quase todas as situações implica prejuízos em J_2 . Dado uma razão de massa χ constante, o aumento da razão de rigidez γ causa: (a) uma diminuição no valor de aceleração-rms da massa suspensa (melhorando o conforto do veículo), e (b) um aumento do critério de *roadhold* (piorando a dirigibilidade).

O parâmetro de razão de rigidez γ é relativamente simples de ser ajustado em competições SAE-Baja, haja visto que a rigidez do massa não-suspensa é função da pressurização do pneumático. Logo, variando a razão de rigidez γ , realizou-se a análise paramétrica da variação da razão de rigidez para $\gamma = 30, 37, 45 e 55$.

Através das Figuras 7-10 buscou-se realizar uma análise comparativa da variação paramétrica da razão de rigidez γ e a configuração atual do veículo SAE-Baja versão 2021 ($\chi = 0.3$, $\gamma = 37$ e $\xi = 0.15$).

A partir do cálculo do valor absoluto da Eq. (7) foi possível avaliar como as excitações da pista são transmitidas à massa suspensa. A **Figura 7** apresenta que houve uma melhora desempenho dos parâmetros avaliados na redução do primeiro pico para baixa frequência. Porém o decaimento delas é menor e há o deslocamento para direita, em alguns casos, do segundo pico.

Figura 7. Comparação da função da transmissibilidade do ¼ de veículo $H_{ST}(\omega)$ entre o veículo atual e uma variação de razões de rigidez γ .

A **Figura 8** apresenta a variação paramétrica do *roadhold* em função da razão de rigidez γ . Os novos parâmetros apresentaram valores máximos menores que o atual.

Figura 8. Comparação do roadhold do ¼ de veículo em função da frequência entre o veículo atual e uma variação de razões de rigidez γ .

A **Figura 9** apresenta a resposta da massa suspensa devido a um PSD de pista de acordo com a norma [22] em diferentes configurações. O veículo SAE-BAJA opera predominantemente no meio *off-road*, por isso utilizou-se a pista de classe E³ a velocidade de 17Km/h⁴. A variação paramétrica resultou em uma aceleração da massa suspensa maior entre as frequências de 2 e 10 Hz com relação a configuração atual. Além disso, visto que o PSD de pista cresce de maneira monotônica com a frequência, vide equações (25) e (26), a frequência em do segundo pico nas função de transmissibilidade possui mais influência na aceleração da massa suspensa que a amplitude.

Figura 9. Comparação da aceleração de pista σ_s do modelo ¼ de veículo (PSD de pista) entre o veículo atual e uma variação de razões de rigidez γ .

A Figura 10. apresenta a aceleração (RMS) da massa suspensa para uma banda de 1/3 oitava, comparou-se a resposta do veículo com os valores da norma ISO 2631 (1978), por se tratar de um veículo de competição escolheu-se como limite os de eficiência reduzida, visando garantir o desempenho do piloto. Os parâmetros retirados do mapa de reposta pioraram o tempo de exposição máxima em frequências superioras a 10Hz, acredita-se que isso ocorreu devido a influência do deslocamento da frequência em que ocorre o segundo pico da função de transmissibilidade.

³ A escolha da classe E se deve por causa do veículo analisado transitar majoritariamente em pistas não asfaltadas

⁴ A escolha da velocidade baseou-se na velocidade média do veículo nesse tipo de terreno

Figura 10. Análise dos tempos de exposição para o nível de eficiência reduzida segundo a norma ISO 2631 (1978)

As configurações retiradas do mapa de resposta apresentam uma melhora significativa no pico do *roadhold* Tabela 2, o que representa uma melhora no desempenho dinâmico do veículo. Entretanto, a partir da norma ISO 2631 (1978) (Figura 10.), os novos parâmetros resultaram em uma redução na quantidade de horas máxima para que o piloto dirija sem que o nível de eficiência do condutor seja reduzido. A Tabela 2 apresenta os parâmetros analisados e os resultados obtidos a partir deles.

Configuração	J1	J2	Tempo de exposição		
atual	0,000382	10,8644	8h		
Υ = 30	0,04227	3,173	2h		
Υ = 37	0,04247	3,488	4h		
Υ = 45	0,04229	3,817	2h		
Υ = 55	0,04213	4,191	2h		

Tabela 2. Comparativo dos parâmetros analisados

Para o projeto do veículo SAE-Baja Piratas do Cerrado versão 2021, propõem-se o aumento da razão de amortecimento $\xi_{opt} = 0.4$ e a manutenção da razão de rigidez $\gamma = 37$ e da razão de massa $\chi = 0.30$. Uma vez que o valor máximo do *roadhold* é 3 vezes menor que o atual e, apesar de tempo máximo para que não tenha a eficiência do piloto reduzida ser menor, está dentro do desejável de 4 horas.

A Figura 11 apresenta a resposta temporal do deslocamento da massa suspensa submetida para uma excitação de pista do tipo *sweep-sine* com amplitude 20*cm* com o intuito de simular as imperfeições da pista. A curva em cinza representa a variação da frequência com o tempo. A direita, o eixo das ordenadas principal representa o deslocamento da massa suspensa. A esquerda, o eixo de ordenadas secundário representa a frequência para a curva em cinza. Dessa forma é possível acompanhar o deslocamento ocasionado na massa suspensa no tempo e relacionar com a frequência de excitação. Percebe-se uma redução drástica no deslocamento em baixas frequências para o sistema otimizado, porém ele mantém-se maior no restante da excitação.

Figura 11 – Evolução temporal do deslocamento da massa suspensa $z_u(t)$ excitada do tipo varredura de senoidal $f(t) = sin(\omega(t)t) (\omega(t) = 2\pi \cdot 0.6 t)$ (excitação sweep-sine).

Para as análises realizadas na **Tabela 2**, os valores superiores a esse foram substituídos por $\xi = 0.40$. A partir dos parâmetros fornecidos do veículo de $\chi = 0.30$ e $\gamma = 37$, temos as métricas para conforto $J_1(0.30,37,\xi_{opt} \simeq 0.39) \simeq 0.042 \ (m/s^2)^2$ e roadhold $J_2(0.30,37,\xi_{opt} \simeq 0.50) \simeq 3.488$ para um ξ de 0.4. A partir dos mapas de resposta, obteve-se a razão de amortecimento ótimo $\xi_{opt} = 0.4$ para os critérios $J_1e J_2$.

6. Conclusão

O presente trabalho tem por finalidade determinar os parâmetros ótimos de massa, rigidez e amortecimento para um modelo linear dinâmico de suspensão veicular para ¼ de veículo. Realizaram-se adimensionalizações do modelo dinâmico de suspensão veicular de ¼ de veículo e a partir dos parâmetros adimensionais razão de massa, razão de rigidez, e razão de amortecimento definiu-se os parâmetros dimensionais da suspensão. Por uma técnica de mapa de resposta, mapeou-se os critérios de conforto J_1 e de *roadhold* J_2 para as combinações das razões adimensionais acima que resultaram na otimização dos critérios. E, para as configurações ótimas obtidas, avaliou-se o limite de exposição para nível de eficiência reduzida (ISO 2631:1978).

Os mapas de respostas produzidos avaliam os parâmetros ótimos do veículo SAE-Baja versão 2021 da equipe Piratas do Cerrado (UnB - FT) para os parâmetros adimensionais razão de massa $\chi = 0.3$, razão de rigidez $\gamma = 37$, indicaram uma razão de amortecimento ótimo $\xi_{opt} = 0.4$. Constou-se um problema de trade-off (otimização com parâmetros conflitante) ou seja, a otimização de parâmetros de dirigibilidade resulta em perdas de conforto, e vice e versa. Dessa forma escolheu-se propor modificações para melhorar o desempenho desse veículo.

A competição SAE-Baja busca testar os limites do veículo em um meio *off-road*, optou-se pela otimização da dirigibilidade verificando o conforto mínimo definido pela norma ISO 2631:1978.

Propôs-se o aumento da razão de amortecimento para $\xi_{opt} = 0.4$ e a manutenção da razão de rigidez $\gamma = 37$ e da razão de massa $\chi = 0.30$. Dessa forma, reduziu-se o valor do *roadhold*, sendo ele 2.5 vezes menor que o atual e, apesar de tempo máximo para que não tenha a eficiência do piloto reduzida ser menor, está dentro do desejável de 4 horas.

Acknowledgments: The present study was financed by Brazilian National Conseil of Research and Development (Conselho Nacional de Pesquisa e Desenvolvimento - CNPq) with partnership with University of Brasilia by Edictal 2020/2021 PROIC/UnB-CNPq. The authors acknowledge to CNPq and UnB by resources that make possible the present work.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Gillespie TD (1992) Fundamentals of Vehicle Dynamics.pdf, 1st Editio. Sae
- 2. Rill G, Castro AA (2020) Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB[®]. CRC Press LLC, Boca Raton, FL
- 3. Wong JY (2001) Theory of Ground Vehicles
- 4. Tamboli JA, Joshi SG (1999) Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations. J Sound Vib 219:193–205. https://doi.org/10.1006/jsvi.1998.1882
- Barbosa RS (2011) Vehicle dynamic response due to pavement roughness. J Brazilian Soc Mech Sci Eng 33:302– 307. https://doi.org/10.1590/s1678-58782011000300005
- 6. Shirahatt A, Prasad PSS, Panzade P, Kulkarni MM (2008) Optimal design of passenger car suspension for ride and road holding. J Brazilian Soc Mech Sci Eng 30:66–76. https://doi.org/10.1590/s1678-58782008000100010
- 7. Naudé AF, Snyman JA (2003) Optimisation of road vehicle passive suspension systems. Part 2. Qualification and case study. Appl Math Model 27:263–274. https://doi.org/10.1016/S0307-904X(02)00121-X
- 8. Naudé AF, Snyman JA (2003) Optimisation of road vehicle passive suspension systems. Part 1. Optimisation algorithm and vehicle model. Appl Math Model 27:249–261. https://doi.org/10.1016/S0307-904X(02)00120-8
- 9. Puneet NP, Hegale A, Kumar H, Gangadharan K V. (2019) Multi objective optimization of quarter car parameters for better ride comfort and road holding. In: AIP Conference Proceedings. p 020046
- 10. Kalyan Raj AH, Padmanabhan C (2009) A new passive non-linear damper for automobiles. Proc Inst Mech Eng Part D J Automob Eng 223:1435–1443. https://doi.org/10.1243/09544070JAUT01112
- 11. Zhou S, Song G, Sun M, Ren Z (2016) Nonlinear dynamic analysis of a quarter vehicle system with external periodic excitation. Int J Non Linear Mech 84:82–93. https://doi.org/10.1016/j.ijnonlinmec.2016.04.014
- 12. Dharankar CS, Hada MK, Chandel S (2018) Performance improvement of passive suspension of vehicles using position dependent damping. Int J Veh Perform 4:89–111. https://doi.org/10.1504/ijvp.2018.088802
- 13. Paliwal V, Dobriyal R, Singh T, et al (2022) Analysis of vehicle suspension dynamics comprising of nonlinear components. In: AIP Conference Proceedings. American Institute of Physics Inc., p 020034
- 14. Dobriyal R, Paliwal V, Kumar P (2020) Dynamic analysis of a quarter car model using power law damper. In: AIP Conference Proceedings. American Institute of Physics Inc., p 020009
- 15. Paliwal V, Dobriyal R, Kumar P (2021) Improving ride comfort by optimizing the parameters of a quarter car model with a power law damper. IOP Conf Ser Mater Sci Eng 1116:012098. https://doi.org/10.1088/1757-899x/1116/1/012098
- 16. Colherinhas GB, de Morais MVG, Shzu MAM, Avila SM (2019) Optimal Pendulum Tuned Mass Damper Design Applied to High Towers Using Genetic Algorithms: Two-DOF Modeling. Int J Struct Stab Dyn 19:1950125. https://doi.org/10.1142/S0219455419501256
- 17. Inman DJ (2001) Engineering vibration, [2nd ed.]. Prentice Hall, Upper Saddle River, N.J
- 18. Alkmim MH (2015) Controle de Vibrações em Turbina Eólica Utilizando Absorvedor de Coluna de Líquido Sintonizado. Brasília, DF, BRAZIL
- 19. Martins JF (2019) Estudo Analítico-Experimental de Parâmetros Ótimos para o Controle Passivo via Absorvedor de Vibrações do Tipo Coluna Líquida Sintonizada em Estruturas. University de Brasília
- 20. Newland DE (David E (1993) An introduction to random vibrations, spectral and wavelet analysis, 3rd ed.. Harlow : Prentice Hall/Pearson Education, Harlow
- 21. Alkmim MH (2017) Analysis of TLCD in a Wind Turbine Subjected to Random Excitations (port. Análise de um Amortecedor de Coluna de Líquido Sintonizado em um Turbina Eólica Sujeita a Carregamento Aleatório). University of Brasilia
- 22. ISO 8608 (2016) Mechanical vibration Road surface profiles Reporting of measured data

Anexo I : Limites de Aceleração Longitudinal

Freqüência (centro da banda de 1/3 de oitava)	Aceleração (m/s²)								
	Tempo de Exposição								
	24 h	16 h	8 h	4 h	2 <i>,</i> 5 h	1 h	25 min	16 min	1 min
1,0	0,280	0,425	0,63	1,06	1,40	2,36	3,55	4,25	5,60
1,25	0,250	0,375	0,56	0,95	1,26	2,12	3,15	3,75	5,00
1,6	0,224	0,335	0,50	0,85	1,12	1,90	2,80	3,35	4,50
2,0	0,200	0,300	0,45	0,75	1,00	1,70	2,50	3,00	4,00
2,5	0,180	0,265	0,40	0,67	0,90	1,50	2,24	2,65	3,55
3,15	0,160	0,235	0,355	0,60	0,80	1,32	2,00	2,35	3,15
4,0	0,140	0,212	0,315	0,53	0,71	1,18	1,80	2,12	2,80
5,0	0,140	0,212	0,315	0,53	0,71	1,18	1,80	2,12	2,80
6,3	0,140	0,212	0,315	0,53	0,71	1,18	1,80	2,12	2,80
8,0	0,140	0,212	0,315	0,53	0,71	1,18	1,80	2,12	2,80
10,0	0,180	0,265	0,40	0,67	0,90	1,50	2,24	2,65	3,55
12,5	0,224	0,335	0,50	0,85	1,12	1,90	2,80	3,35	4,50
16,0	0,280	0,425	0,63	1,06	1,40	2,36	3,55	4,25	5,60
20,0	0,355	0,530	0,80	1,32	1,80	3,00	4,50	5,30	7,10
25,0	0,450	0,670	1,0	1,70	2,24	3,75	5,60	6,70	9,00
31,5	0,560	0,850	1,25	2,12	2,80	4,75	7,10	8,50	11,2
40,0	0,710	1,060	1,60	2,65	3,55	6,00	9,00	10,6	14,0
50,0	0,900	1,320	2,0	3,35	4,50	7,50	11,2	13,2	18,0
63,0	1,120	1,700	2,5	4,25	5,60	9,50	14,0	17,0	22,4
80,0	1,400	2,120	3,15	5,30	7,10	11,8	18,0	21,2	28,0
Os valores acima definem o limite em termos de valor eficaz (RMS) da vibração de frequência simples (senoidal) ou valor eficaz na banda de um terco de oitava para a vibração distribuída.									

Tabela 3. Valores numéricos de "nível de eficiência reduzido (fadiga)" para aceleração da vibração na direçãolongitudinal (pé - cabeça) (ISO 2631, 1978)