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Abstract: This work presents an Immersed Boundary Method (IBM) for the study of fluid-body interaction in two-

dimensional thermofluidynamics. The method is applied to the study of heat-transfer by forced convection and onset 

turbulence around isothermal cylinders in tandem, immersed in an incompressible Newtonian fluid. The fluid motion 

and temperature are defined on a Lagrangian mesh, and a Virtual Physical Model is used to impose the no-slip 

boundary condition and evaluate the heat exchange between the fluid and the solid surface. The Navier-Stokes and 

energy equations are solved under physically appropriate boundary conditions. The onset turbulence is modeled using 

the Smagorinsky Model, and the results show that recirculation increases with increasing Reynolds number and 

decreases with increasing Richardson number, and also the thermal plumes moving upwards are generated. The 

results are validated with previous numerical results for different Reynolds numbers.   
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1. Introduction 

Many physical phenomena in fluid mechanics can be described mathematically through the use of a set of 

nonlinear partial differential equations, known as the laws of conservation of fluid mechanics. These laws include 

conservation of momentum, conservation of mass (also known as continuity), and conservation of energy. Together, 

these laws model the dynamics of the forces acting on the fluid, as well as, the energy exchange that occurs in different 

regions of the flow. In this work, these equations were discretized using the finite difference method for an 

incompressible Newtonian fluid, which relates the term of viscous stress to the deformation rates in the velocity field, 

thus simulating the flow dynamics using the Navier-Stokes equations. 

Traditional methods of domain discretization can be difficult to implement and require significant computation 

time, often necessitating the use of successive remeshing processes and the introduction of new generalized coordinate 

systems. In order to address these challenges, a computational code was developed for the immersed boundary 

methodology for the study of thermofluidynamics interactions. This work presents some of the main studies involving 

the IBM, specifically focusing on the heat-transfer by mixed convection process. The purpose of these references is to 

provide a theoretical foundation for the methodology, highlighting important physical and mathematical concepts that 

will be applied in the current work. 

Among the main reference involving the thermal part, we can list some important ones, such as, Badr & Dennis 

(1985) and Badr et al. (1990). These works do not present the IBM, but they are an excellent precursor in relation to the 

flow around rotating circular cylinder involving forces convection, being the theoretical basis used in other important 

works for the implementation of the thermal part. In summary, the experimental and numerical works of the authors 

Badr & Dennis considering the problem of laminar flow with heat-transfer by forced convection from a rotating circular 
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cylinder around its own axis, initially for a Reynolds number equal to 100, with a specific rotation rate (𝛼) for the 

interval varying between (0.5 ≤ 𝛼 ≤ 3.0). Meanwhile, the second work, uses the Reynolds numbers range varying 

between (103 ≤ 𝑅𝑒 ≤ 104), with specific rotation rate equal to 4.0. In both works, the cylinder is located in a uniform 

flow. Thus, the author report that the temperature fields are strongly influence by the vorticity of rotation of the 

cylinder. The authors found, in both studies, that the heat-transfer coefficient tends to decrease as the rotation of the 

cylinder increase. An attribution of the presence of a layer of the rotation around the cylinder was verifying, being 

separated from the main fluid of the flow. Thus, the results demonstrated convergence and numerical stability 

compared to others available in the literature (see, Lai & Peskin (2006) and Sharma et al. (2012)). 

Ashrafizadeh and Hosseinjani (2017) present an extension of the Immersed Boundary Method (IBM) for the 

analysis of natural and mixed convection processes in a two-cylinder side-by-side configuration with alternating rotation 

velocity and heating. The study is conducted in a cold and square cavity containing air, with a Prandtl number (Pr) of 

0.7. The study explores the effect of varying rotation rates and different values of Rayleigh and Richardson numbers. 

Pure natural convection cases are also considered. The study includes an examination of isothermal lines, streamlines, 

Nusselt numbers, and local and average heat transfer around the solid boundary. The IBM is used to handle the 

boundary conditions and solve the governing equations for a two-dimensional flow, using an orthogonal Cartesian 

mesh. 

Santos et al. (2018) presented an application of the Immersed Boundary Method (IBM) for low and high Reynolds 

numbers, coupled with the Virtual Physical Model (VPM) proposed by Silva et al. (2003) to calculate the Lagrangian 

forced field, based only on the momentum equation. The study simulates two-dimensional incompressible flows around 

a heated square cylinder, with the temperature considered constant at the surface. The results showed a good 

numerical agreement, with the margin of error being less than 3% when compared to other works. The study also 

obtained the temporal evolution of the drag and lift coefficients, as well as the Nusselt number, using the same 

methodology and parameters obtained from Eulerian fields. The study also noted that the geometry used in this work 

presents singularities, which were taken into account in the construction of the root algorithm (computational code), 

making it applicable to other geometries. Additionally, the results showed that the influence of the surface of the heated 

body immersed in the flow increases as the Reynolds number increases. A turbulence model was also used to model 

the energy transfer process between the largest and smallest turbulent scales. 

Santos and Gama (2021) presented an investigation of the thermal and turbulence behaviors of incompressible 

Newtonian flow by numerical simulation. The study combines two physical phenomena, namely heat-transfer by natural 

and forced convection and onset of turbulence, around different isothermal complex geometries using the IBM to model 

the presence of the isothermal body. The study implements boundary conditions of the Dirichlet and Neumann types. 

For turbulence modeling, the Smagorinsky and Spalart-Allmaras models are used for Reynolds and Richardson numbers 

ranging up to 5000 and 5, respectively. The authors confirm that downstream of the immersed body, recirculation: i) 

increases with the increase in Reynolds number while keeping the Richardson number constant, ii) decreases with the 

increase in Richardson number while preserving the Reynolds number constant. They also confirm the generation of 

thermal plumes moving upwards. iii) For Reynolds numbers in the order of a few hundred and Richardson numbers 

around 5, the study observed the formation of vortex wake in the downstream region for tandem cylinders. iv) 

Interactions within the vortex wake, with the shear layer separated from the downstream cylinder, create two vortices 

near the downstream cylinder. v) The shear layer separating from the upstream cylinder creates a vortex behind the 

downstream cylinder. 

In this work, constant properties are considered. The buoyancy term is based on the Boussinesq approximation, 

which is used to model forced convection. Other terms, such as energy generation and internal heat or humidity, are 

neglected, as well as, the effects of Coriolis forces or rotation. The proposed methods were validated for forced 

convection in an isothermal body geometry. By combining the forced convection heat-transfer with the onset 

turbulence model considered in this work, the methodology is validated around the immersed isothermal body 

(cylinders in tandem). The next section presents the mathematical methodology. 

2. Mathematical methodology 

2.1 Formulation for the fluid motion and temperature 

Consider an incompressible viscous flow in a two-dimensional domain that contains a domain Ω and border 𝜕𝛺𝑏 , 

being heated with isothermal temperature (or constant temperature on the surface of the immersed body) modelled 

through discretized (Lagragian) points. As in previous studies, a forcing term is included in the momentum equations, 



RIPE 2022, Vol. 8, N° 2, 93-102                                                                            95 

 

 

and a heat source term is incorporated into the energy equation. As a result, the governing equations that describe 

mixed convection (dimensional and primitive form) can be written in primitive variable forms as follows: 

 

𝝆𝟎 (
𝝏𝒖

𝝏𝒕
+ (𝒖 ∙ 𝛁)𝒖) = −𝛁𝒑 + 𝝁𝛁𝟐𝒖 + 𝒇, (1) 

𝝆𝟎 (
𝝏𝒖

𝝏𝒕
+ (𝒖 ∙ 𝛁)𝒖) = −𝛁𝒑 + 𝝁𝛁𝟐𝒖 + 𝝆𝟎𝒈(𝟏 − 𝜷(𝑻 − 𝑻∞))𝒋 + 𝒇, (2) 

𝝆𝟎𝒄𝒑 (
𝝏𝑻

𝝏𝒕
+ (𝒖 ∙ 𝛁)𝑻) = 𝒌𝛁𝟐𝑻 + 𝒒, (3) 

𝛁 ∙ 𝒖 = 𝟎, (4) 

where Eqs. (1), (3) and (4) are for forced convection, while Eqs. (2), (3) and (4) are for natural convection (in Eq. (2), the 

Boussinesq approximation is used), the set of these equations form the heat transfer process by mixed convection. The 

symbols (i) 𝒖, 𝒑, 𝑻 and 𝑻∞ denote velocity vector, pressure, temperature and reference temperature, respectively; (ii) 
𝝆𝟎, 𝝁, 𝜷, 𝒌  and 𝒄𝒑  are, fluid density at temperature, viscosity, thermal diffusivity, thermal expansion coefficient 

specific heat at constant pressure, respectively; (iii) 𝒈  is a downward gravitational acceleration, (iv) the therm 

𝝆𝟎𝒈𝜷(𝑻 − 𝑻∞) accounts for the effects of the fluid temperature on the fluid flow, and (v) 𝒋 is the unit vector in the 
positive y-axis direction, respectively. 

The governing equations are dimensionless by using characteristics scales such as the fluid density 𝝆𝟎  for the 

characteristic density, the far-field velocity 𝑼∞  for the characteristic velocity, and the body diameter 𝑫  for the 

characteristic length. The following characteristic scale are introduced: 𝑫 𝑼∞
⁄  for time; 𝝆𝟎

𝑼∞
𝟐

𝑫
⁄  for de Eulerian 

momentum force or simply forcing term, represented by 𝒇. To reduce the calculation process, the Momentum Eq. (1), 

and Energy Eq. (3) equations, are rewritten in dimensionless form, represented by the equations: 

𝝏𝒖

𝝏𝒕
+ (𝒖 ∙ 𝛁)𝒖 = −𝛁𝒑 + (𝑹𝒆)−𝟏𝛁𝟐 + 𝑮𝒓(𝑹𝒆)−𝟐𝒈𝑻 + 𝒇, (5) 

(
𝝏𝑻

𝝏𝒕
+ (𝒖 ∙ 𝛁)𝑻) = (𝑹𝒆 ∙ 𝑷𝒓)−𝟏 + 𝒒, (6) 

where 𝑹𝒆 is the Reynolds number, defined mathematically by 𝑹𝒆 =
𝝆𝟎𝑼∞𝑫

𝝁⁄  , and 𝑮𝒓  is the Grashof number, 

defined by 𝑮𝒓 =
𝒈𝜷(𝑻 − 𝑻∞)𝑫

𝟑

𝝂𝟐
⁄  . The therm 𝑷𝒓, denotes the Prandtl number, defined by 𝑷𝒓 = 𝝂

𝜶⁄  , where 𝜶 

and 𝝂 are the thermal diffusivity and kinematic viscosity, respectively. With regard to the dimensionless continuity 

equation, it assumes the same form as the dimensional continuity equation.  

The forcing term 𝒇 in the momentum Eqs. (1) and (2) is the force density at the fluid (Eulerian mesh) points distributed 

from the force density at the boundary (Lagrangian) point, which can be expressed as 

𝒇(𝒙, 𝒕) = ∫ 𝐅

𝛛𝛀𝐛

(𝑿𝒌, 𝒕)𝜹(𝒙 − 𝑿𝒌)𝒅𝑿𝒌 , (7) 
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where 𝑭(𝑿𝒌, 𝒕) is the Lagrangian force density, calculated on the interface points 𝒙 and 𝑿𝒌 which are the position 

vectors of the Eulerian and Lagragian points, respectively. The presence of the Dirac delta function, 𝜹(𝒙 − 𝑿𝒌), represents 

the interaction between the fluid and the immersed boundary. 

Similarly, the thermal source, represented by 𝒒, is added to Eq. (3), being responsible for making the flow feel the presence 

of the heat solid interface, being expressed by 

𝒒(𝒙, 𝒕) = ∫ 𝐐

𝛛𝛀𝐛

(𝑿𝒌, 𝒕)𝜹(𝒙 − 𝑿𝒌)𝒅𝑿𝒌 , (8) 

where 𝑸(𝑿𝒌, 𝒕) is the (virtual boundary) heat flux on the Lagrangian point, 𝑿𝒌.  

 

2.2 Dimensionless equations for mixed convection 

Thus, the implicit calculation for the dimensional equations (1)-(4), is performed in a dimensionless way with the 

following equations: 

 

𝑫𝒕𝑼 = −𝛁𝒑 + (𝑹𝒆)
−𝟏𝛁𝟐𝑼 +∫ 𝐅

𝚪

(𝑿𝒌, 𝒕)𝜹(𝒙 − 𝑿𝒌)𝒅𝑿𝒌, (9) 

𝑫𝒕𝑼 = −𝛁𝒑 + (𝑹𝒆)−𝟏𝛁𝟐𝑼 + 𝑮𝒓(𝑹𝒆)−𝟐𝚯𝒋 + ∫ 𝐅

𝚪

(𝑿𝒌, 𝒕)𝜹(𝒙 − 𝑿𝒌)𝒅𝑿𝒌, (10) 

𝑫𝒕𝚯 = (𝑷𝒆)
−𝟏𝛁𝟐𝚯+∫ 𝐐

𝚪

(𝑿𝒌, 𝒕)𝜹(𝒙 − 𝑿𝒌)𝒅𝑿𝒌, (11) 

𝛁 ∙ 𝑼 = 𝟎, (12) 

where 𝑫𝒕 ∗ = 𝝏𝒕 ∗ +(𝑼 ∙ 𝛁) ∗  is the material derivative, 𝑼, 𝒑  and 𝚯  are the dimensionless velocity, pressure and 

temperature fields, respectively. In this work, we will also refer to the Richardson number by 𝑹𝒊 =
𝒈𝜷(𝑻𝒄−𝑻∞)𝑫

𝒖∞
𝟐 , which 

express the ratio between natural and forced convection, and the therm 𝑻𝒄 is the boundary/wall temperature. 

3. Mathematical modeling of turbulence 

Before discussing the turbulence model, it is important for the reader to have a basic understanding of numerical 

methods. For more information on the Virtual Physical Model, as well as, the specific numerical methods used to 

calculate the coupling between velocity, pressure, and temperature, the calculation of the Lagrangian force distribution, 

and the thermal source, please refer to Silva et al. (2003) and Santos & Gama (2021). 

3.1. Smagorinsky model 
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The Smagorinsky algebraic model (1963) is built on the assumption of local equilibrium for small scales, meaning that 

the energy input into the spectrum is equal to the energy dissipated by viscous effects. This model provides a useful 

tool for understanding and predicting small-scale dynamics in fluid systems. This model is based on the formulation: 

𝒗𝒕 = (𝑪𝒔𝓵)
𝟐√𝟐�̅�𝒊𝒋�̅�𝒊𝒋 , (13) 

where, 𝑆�̅�𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑖
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) is the stress rate, ℓ is the length of the sub-mesh, and 𝐶𝑠 is the Smagorinsky constant. The 

application of the damping function in the Smagorinsky method aims to reduce turbulent viscosity near the walls of the 

immersed boundary, regardless of the geometry being considered. For further information, refer to Smagorinsky (1963) 

and Santos & Gama (2021). 

4. Numerical method 

In this paper, was used the Fractional Steps Numerical Method (FSNM) to solve the Navier-Stokes equation, 

resulting in new velocity and pressure fields. The time discretization used is the first-order Euler's method, and the 

Navier-Stokes equation is solved implicitly. The pressure correction is done through the linear system, which is solved 

using the Modified Strongly Implicit Procedure, developed by Schneider and Zedan (1981). The Eq. (1) can be re-

expressed as follows: 

 

 

𝒖𝒊
𝒏+𝟏 − 𝒖𝒊

𝒏

∆𝒕
+ [

𝝏

𝝏𝒙𝒋
(𝒖𝒊

𝒏𝒖𝒋
𝒏)] = −

𝟏

𝝆

𝝏𝒑𝒏+𝟏

𝝏𝒙𝒊
+

𝝏

𝝏𝒙𝒋
[(𝒗 + 𝒗𝒕) (

𝝏𝒖𝒊
𝒏

𝝏𝒙𝒋
+
𝝏𝒖𝒋

𝒏

𝝏𝒙𝒊
)] + 𝒇𝒊

𝒏 , (14) 

 

In the FSNM, the velocity, the pressure and the forcing term of the predictive instant, n, are used to calculate, in 

the predictive step, an estimate for the velocity in the current time �̅�𝑖
𝑛+1, offered by equation 

 

�̅�𝒊
𝒏+𝟏 − 𝒖𝒊

𝒏

∆𝒕
+ [

𝝏

𝝏𝒙𝒋
(𝒖𝒊

𝒏𝒖𝒋
𝒏)] = −

𝟏

𝝆

𝝏𝒑𝒏

𝝏𝒙𝒊
+

𝝏

𝝏𝒙𝒋
[(𝒗 + 𝒗𝒕) (

𝝏𝒖𝒊
𝒏

𝝏𝒙𝒋
+
𝝏𝒖𝒋

𝒏

𝝏𝒙𝒊
)] + 𝒇𝒊

𝒏 . (15) 

 

The next step in the FSNM is to subtract Eq. (14) from Eq. (15), resulting in 

�̅�𝒊
𝒏+𝟏 − 𝒖𝒊

𝒏

∆𝒕
=
𝟏

𝝆

𝝏

𝝏𝒙𝒊
(𝒑𝒏+𝟏 − 𝒑𝒏) , (16) 

performing some algebraic manipulations, the calculated pressure field is obtained, thus obtaining the corrected 

equation for the velocity in the current iteration (corrector step), being represented by 

𝒖𝒊
𝒏+𝟏 = �̅�𝒊

𝒏+𝟏 −
∆𝒕

𝝆

𝝏𝒑′
𝒏+𝟏

𝝏𝒙𝒊
, (17) 

where, 𝑝′
𝑛+1

= 𝑝𝑛+1 − 𝑝𝑛.  

 

Knowing that the velocity field must satisfy the continuity equation, one obtains  

 

𝟏

∆𝒕

𝝏�̅�𝒊
𝒏+𝟏

𝝏𝒙𝒊
=
𝟏

𝝆

𝝏𝟐𝒑′𝒏+𝟏

𝝏𝒙𝒊𝝏𝒙𝒊
 , (18) 
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Where the Eq. (18) is a Poisson equation for the correction of pressure, 𝑝′. More details about this numerical method, 

see Santos et al. (2018) and Santos and Gama (2021). 

 

4.1 – The Fractional Step Method Algorithm 

This algorithm consists in carrying out the following steps: 

i) Estimate the velocity field, Eq. (14); 

ii) With the estimated velocity field, solve the linear system for the pressure correction, Eq. (18); 

iii) Correct the velocity field, Eq. (17), and pressure 𝑝′
𝑛+1

; 

iv) Check the conservation of mass within the specified tolerance; 

v) Advance to the next time step. 

 

5. Results 

5.1 Generalities related to numerical simulation and additional information about the result 

The IBM, implemented in C++ code, allowed the simulation of two-dimensional flows around a heated body with constant 

temperature that is immersed in the flow. This method took into account different Reynolds numbers. In this specific case, 

the simulation focuses on the flow around a pair of circular cylinders heated in tandem configuration, which have equal 

diameters and the same center-to-center distance, represented by Lcc, see Fig. (1). The fluid and the heat flow are 

characterized by Reynolds number (𝑹𝒆 =
𝝆𝑼∞𝑫

𝝁⁄ ), Prandtl number (𝑷𝒓 =
𝝁𝒄𝒑

𝒌⁄ ), where 𝝆 is the fluid density, 𝑼∞ 

is the free stream velocity, 𝑫 is the cylinder diameter, 𝝁 is the dynamic viscosity, 𝒄𝒑 is heat at constant pressure and 

𝒌 the thermal diffusivity. In this work, numerical simulations are conducted for different Reynolds numbers, 𝑹𝒆 = 𝟏𝟎𝟎 −

𝟓𝟎𝟎, while keeping the Prandtl number fixed at 𝑷𝒓 = 𝟎. 𝟕 (same as the air). Both fluid flow characteristics like the drag 

(𝑪𝒅) and lift (𝑪𝓵) coefficients, recirculation downstream of the cylinder, average Nusselt number on the surface of the 

cylinder are presented and compared with previous results in the literature.  

In this case, the angle formed by the segment joining the centers of the two cylinders and the abscissa axis is zero. For 

these simulations, a non-uniform mesh with 𝟑𝟏𝟖 × 𝟏𝟔𝟒 point was used. The use of a uniform mesh in all computational 

domains, would considerably increase the computational cost. The simulation of flow develops from left to right. The 

velocity profile in the input field is uniform, with unit one value. In all simulations, the domain dimensions were 𝑳𝒙 = 𝟓𝟓𝒅 

and 𝑳𝒚 = 𝟑𝟎𝒅. The cylinders were positioned at 𝒙 = 𝟏𝟔. 𝟓𝒅 and 𝒚 = 𝟏𝟓𝒅, where 𝒅 represents the length of the side 

of the immersed body. For all simulations, a total of 𝟐𝟎𝟏 points were used for the Lagragian mesh, with the non-uniform 

mesh in the region of the isothermal cylinder, maintaining a minimum amount of 𝟑𝟎 meshes inside. For all simulations, 

the time step used in the calculation process was 𝟏𝟎−𝟔, being dynamically calculated by the Courant-Friedrichs-Lewy (CFL) 

stability criterion, also known as CFL condition. To avoid numerical problems, the maximum grid expansion ratio of 3% was 

employed in these regions in both directions. In the present work, the ratio between the Lagrangian and Eulerian mesh 

sizes was maintained at 0.98. For the lateral boundaries of the domain, free boundary conditions were used, i.e., zero 

velocity at the border. At the entrance of domain, a velocity profile (𝑼∞) was imposed and, at the exit, the derivate is zero 

for the velocity. For the pressure, the boundary conditions used were Neumann at the entrance and Dirichlet at the exit, 

and on the sides of the sides of the domain, at the exit, and at the lower border were defined by 𝒑 = 𝟎 and 
𝝏𝒑

𝝏𝒙
=

𝝏𝒑

𝝏𝒚
=

𝟎.  

For the temperature, the conditions are analogous, given by 𝚯 = 𝟎 and 
𝝏𝚯

𝝏𝒙
=

𝝏𝚯

𝝏𝒚
= 𝟎. Concerning the initial condition, 

𝒖 = 𝒗 = 𝟎 , at 𝒕 = 𝟎  (time), for the entrance computational domain. The cylinder is maintained at a constant 

dimensionless temperature equal to 𝟏, i.e., 𝚯𝒄 = 𝟏; while the fluid has an initial temperature equal to zero. Although the 

boundary condition at the exit is not a reflective condition, the simulation results successfully support the formation of 

vortices outside the domain, without any reflection. The previously mentioned boundary conditions, at the entry and exit 
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of the domain, are imposed, necessary to be consistent with the velocity, pressure and temperature equations, due to the 

grid arrangement chosen during the simulation. The total time duration in all simulations was 48h. 

5.2 Calculation domain and Boundary conditions 

In the Fig. (1), the two cylinders are identical and fixed with the same diameters, maintained in tandem (cylinders in 

line) with downstream of the cylinder A. The cylinders are confined to a channel with free flow, with uniform velocity 

(𝑼∞) and constant temperature (𝑻𝒄(> 𝑻∞)). The horizontal and vertical spacing between the cylinders are fixed in 

𝑳𝒖 = 𝟏𝟔. 𝟓𝒅 and 𝑳𝒅 = 𝟏𝟗. 𝟓𝒅, respectively. These values are chosen to reduce the effect of boundary conditions on 

the inlet and outlet in relation to the flow pattern and cylinder contour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The drag (𝑪𝒅) and lift (𝑪𝓵) coefficients for the calculation of each cylinder are performed as follows: 

 

𝑪𝒅 = 𝑪𝒅𝒑 + 𝑪𝒅𝒗 =
𝟐𝑭𝒅
𝝆𝑼∞

𝟐 𝑫
 , (19) 

𝑪𝓵 = 𝑪𝓵𝒑 + 𝑪𝓵𝒗 =
𝟐𝑭𝓵
𝝆𝑼∞

𝟐 𝑫
 , 

(20) 

 

where, 𝐶ℓ𝑝 and 𝐶ℓ𝑣 represent the lift coefficients due pressure and viscous forces, respectively. In a similar way, 𝐶𝑑𝑝 

and 𝐶𝑑𝑣 represent the drag coefficients due to the pressure and viscous forces. The terms, 𝐹𝑑 and 𝐹ℓ are forces of drag 

and lift, respectively, acting on the surface of the cylinder. Thus, the drag and lift coefficients can be obtained from the 

expressions: 

Figure 1: Illustration of the computational domain with two cylinders in tandem configuration. 
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{
  
 

  
 

𝑪𝒅𝒑 = 𝟐∫(𝒑𝒇 − 𝒑𝒓)𝒅𝒚

𝟏

𝟎

𝑪𝒅𝒗 =
𝟐

𝑹𝒆
∫ [{(

𝝏𝒖

𝝏𝒚
)
𝒔

+ (
𝝏𝒖

𝝏𝒚
)
𝒊

} 𝒅𝒙 + {(
𝝏𝒖

𝝏𝒙
)
𝒇
+ (

𝝏𝒖

𝝏𝒙
)
𝒓
} 𝒅𝒚] ,

𝟏

𝟎

  (21) 

{
  
 

  
 

𝑪𝓵𝒑 = 𝟐∫(𝒑𝒊 − 𝒑𝒔)𝒅𝒚

𝟏

𝟎

𝑪𝓵𝒑 =
𝟐

𝑹𝒆
∫ [{(

𝝏𝒖

𝝏𝒚
)
𝒇

+ (
𝝏𝒖

𝝏𝒚
)
𝒃

} 𝒅𝒙 + {(
𝝏𝒖

𝝏𝒙
)
𝒕
+ (

𝝏𝒖

𝝏𝒙
)
𝒊
} 𝒅𝒚] .

𝟏

𝟎

  

(22) 

5.3 Simplified flow fields for 𝑹𝒆 = 𝟓𝟎𝟎 and 𝑹𝒊 = 𝟎 to isothermal cylinders in tandem with forced convection 

The Figs. (2) and (3), present simplified fields of temperature, pressure, effective viscosity, vorticity, isothermal lines, 

and aerodynamics coefficients, 𝑪𝒅  and 𝑪𝓵 for the flow around cylinders in tandem, for Reynolds and Richardson 

numbers, equals to 500 and 0, respectively. 

  

(a) (b) 

  

(c) (d) 

Figure 2: Smagorinsky model for simplified fields of (a) temperature, (b) pressure, (c) effective vorticity and (d) 

vorticity for 𝑅𝑒 = 500 and 𝑅𝑖 = 0. 
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                     (e)                     (f) 

Figure 3: Smagorinsky model for simplified fields of (e) isotherms lines and (f) drag and lift 

coefficients (𝑪𝒅, 𝑪𝓵) for 𝑅𝑒 = 500 and 𝑅𝑖 = 0. 

 

The main results for the simulations can be summarized as follows: 

 

• A wake forms upstream of the second cylinder, but it needs to be checked whether it can be decreased or 

suppressed with the increase of the distance between the cylinders; 

• The isothermal lines reflect the same behavior of the pattern of the streamlines (current lines) – Fig. (3-(e)); 

• The thermal buoyancy is suppressed in the recirculation zones of the tandem cylinders, even with a mounting 

angle; 

• The thermal buoyancy tends to in the recirculation zones of the tandem cylinders, even with a mounting angle. 

 

6 Conclusions 

This study presents the development of an immersed boundary method for simulating heat and mass transfer problems. 

The method accounts for the impact of thermal boundaries on the flow and temperature fields by applying velocity and 

temperature corrections. The temperature corrections are calculated implicitly to ensure the temperature at the 

immersed boundary conforms to physical boundary conditions. The method also incorporates a forcing term to account 

for momentum transfer between the immersed body and the surrounding fluid. To model onset turbulence, the 

Smagorinsky model, which is based on the local equilibrium hypothesis and the Boussinesq hypothesis, was utilized. A 

computational code was implemented to analyze the interaction of heat transfer and onset turbulence in thermofluid-

dynamics around isothermal cylinders in tandem. The results were found to be in agreement with existing data in the 

literature, validating the effectiveness of the numerical method. 
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